Казахский национальный университет имени аль-Фараби

На правах рукописи

УДК 521.1

ШОМШЕКОВА САУЛЕ АХМЕТБЕКОВНА

Исследование динамической эволюции нестационарных экзопланетных систем

6D060300 - Механика

Диссертация на соискание степени доктора философии (PhD)

Научные консультанты доктор физико-математических наук, профессор Минглибаев М.Дж.

доктор физико-математических наук, профессор Прокопеня А.Н. (Warsaw University of Life Sciences, Warsaw, Poland)

Республика Казахстан Алматы, 2020

СОДЕРЖАНИЕ

	ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ	4
1) 15
1	АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ НАБЛЮДЕНИЙ ЭКЗОПЛАНЕТНЫХ СИСТЕМ	15
1.1	Основные характеристики экзопланетных систем	15
1.2	Анализ данных каталогов экзопланетных систем по	16
	спектральным классам центральной звезды	
1.3	Основные результаты, полученные в разделе 1	22
2	ДВУХПЛАНЕТНАЯ ЗАДАЧА ТРЕХ ТЕЛ С МАССАМИ,	24
	ИЗМЕНЯЮЩИМИСЯ АНИЗОТРОПНО	
2.1	Уравнения движения в абсолютной системе координат	24
2.2	Уравнения движения в относительной системе координат	25
2.3	Уравнения возмущенного движения в относительной системе координат	27
2.4	Невозмущенное движение	28
2.5	Уравнения возмущенного движения планет в форме Лагранжа	30
2.6	Реактивные силы при анизотропном изменении массы	32
2.7	Основные результаты, полученные в разделе 2	35
3	ВЫЧИСЛЕНИЕ ВОЗМУЩАЮЩЕЙ ФУНКЦИИ В	36
	АНАЛОГАХ ВТОРОЙ СИСТЕМЫ ПУАНКАРЕ	
3.1	Уравнения движения в оскулирующих элементах Пуанкаре	36
3.2	Разложения возмущающей функции в оскулирующих	39
	элементах Пуанкаре	
3.3	Уравнения движения с учетом вековых возмущений в аналогах второй системы Пуанкаре	43
3.4	Уравнения движения в безразмерных переменных в аналогах второй системы Пуанкаре	46
3.5	Численные решения уравнений возмущенного движения в	47
	аналогах второй системы Пуанкаре	
3.6	Основные результаты, полученные в разделе 3	56
4	УРАВНЕНИЯ ВОЗМУЩЕННОГО ДВИЖЕНИЯ В	57
	ОСКУЛИРУЮЩИХ ЭЛЕМЕНТАХ В ФОРМЕ ЛАГРАНЖА	
4.1	Уравнения возмущенного движения двух планет в	57
12	Vрарцения возмушенного примения прухнланетной запани трех	58
7.2	тел при наличии реактивных сил	50
4.3	Аналитические разложения возмушающей функции по	59
	оскулирующим элементам по квазиконическому сечению	
4.3.1	Разложение главной части возмушающей функции	59
4.3.1.1	Разложение величины $\tilde{\Psi}$	60

4.3.1.2	Разложение в ряд величины $\Delta_0^{-(2i+1)}$	62
4.4	Аналитическая формула для разложения главной части возмущающей функции	65
4.5	Аналитическая формула для разложения косвенной части возмущающей функции	66
4.6	Аналитическая формула для разложения реактивной силы в возмущающей функций функции	68
4.7	Аналитическая формула для разложения дополнительной силы в возмущающей функций функции	69
4.8	Основные результаты, полученные в разделе 4	70
5	ЧИСЛЕННЫЕ РЕШЕНИЯ УРАВНЕНИЙ ВОЗМУЩЕННОГО ДВИЖЕНИЯ В ОСКУЛИРУЮЩИХ ЭЛЕМЕНТАХ В ФОРМЕ ЛАГРАНЖА	71
5.1	Постановка задачи	71
5.2	Вычисления возмущающих функций в виде степенных рядов по малым параметрам	75
5.3	Вековые возмущения орбитальных элементов	82
5.4	Численные решения эволюционных уравнений возмущенного движения с учетом изменения масс при наличии реактивных сил	88
5.5	Основные результаты, полученные в разделе 5	96
	ЗАКЛЮЧЕНИЕ	97
	СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	99
	ПРИЛОЖЕНИЕ А Разложения к разделу 3.3	105

ОБАЗНАЧЕНИЯ И СОКРАЩЕНИЯ

P_0, P_1, P_2	-	тела с переменными массами				
m_0, m_1, m_2	-	переменные массы соответствующих тел P_0 , P_1 , P_2				
m_{00}, m_{10}, m_{20}	-	массы соответствующих тел P ₀ , P ₁ , P ₂ в начальный момент				
		времени t_0				
U	-	силовая функция				
G	-	гравитационная постоянная				
$\mu_{_j}$	-	приведенные массы				
μ_{j0}	-	приведенные массы в начальный момент времени t_0				
$a_j, e_j, \omega_j, \Omega_j, i_j, \phi_j$	-	аналоги кеплеровских элементов				
a_j	-	аналоги больших полуосей				
e_{j}	-	аналоги эксцентриситетов				
ω_{j}	-	аналоги аргументы перицентров				
Ω_{j}	-	аналоги долготы восходящих узлов				
i_j	-	аналоги наклонения				
$\phi_{_{j}}(au)$	-	первообразные функции $\left[\gamma_{j}(t)\right]^{-2}$ соответственно				
$\pi_{_j}$	-	аналоги долготы перицентров				
n _j	-	аналоги кеплеровского среднего движения				
A_j, B_j, C_j	-	коэффициенты Лапласа				
$F(\alpha)$	-	эллиптический интеграл первого рода				
$E(\alpha)$	-	эллиптический интеграл второго рода				
Sp	-	спектральная классификация звезд				
M_{Sun}	-	внесистемная единица измерения массы, применяющаяся				
		в астрономии для выражения массы звёзд и других				
		астрономических объектов. Масса Солнца $M_{1} = (1, 0.0007), 10^{30}$				
М		$M_{Sun} = (1,9884 / \pm 0,0000 /) \cdot 10^{30} \text{ Kr.}$				
I VI Jup	-	внесистемная единица измерения массы, применяющаяся				
		Было предложено ввести границу по массе между				
		планетами и звездами. планета это объект с массой.				
		меньшей 13 масс Юпитера, $M_{Jup} = 2*10^{27}$ кг.				
a.e.(AU)	-	единица расстояния в астрономии, равная среднему				
		расстоянию Земли от Солнца (большой полуоси орбит).				
		Обозначается a.e. (AU), численно равна 149598000 км.				

введение

Общая характеристика работы

В настоящей работе рассматривается классическая двухпланетная задача трех тел переменной массы в общем случае, когда массы тел изменяются анизотропно с различными скоростями, что приводит к появлению реактивных сил.

Поскольку дифференциальные уравнения движения являются неинтегрируемыми, проблема исследуется в рамках теории возмущений, причем в качестве нулевого приближения используется точное решение задачи двух тел с переменными массами, описывающее апериодическое движение тел по квазиконическим сечениям.

Подробно описаны основные типы вычислений, связанных с разложением возмущающих функций в степенные ряды, и получены сами разложения для возмущающих функций в степенные ряды с точностью до третьего порядка по эксцентриситетам и наклонениям.

Получены эволюционные уравнения, определяющие вековые возмущения орбитальных элементов, которые допускают численные интегрирование при заданных законах изменения масс тел.

На основе полученных эволюционных уравнений Лагранжа и Пуанкаре найдены численные решения задачи с анизотропным изменением масс при наличии реактивных сил для избранной экзопланетной системы.

Выбор экзопланетной системы проведен на основе анализа их распределения по спектральным классам центральной звезды, по планетам разных масс и орбитальных периодов и по орбитальным параметрам. На основе проведенного анализа выбрали экзопланетную систему и небесномеханическую модель для исследования. Рассмотрены случаи изотропного и анизотропного изменения масс.

Современное состояние исследований динамической эволюции нестационарных экзопланетных систем

Открытие планет вне Солнечной системы (экзопланет) стало началом новой эпохи развития астрономии и применения методов небесной механики. С момента обнаружения первой экзопланеты 51 Peg b к настоящему времени, по данным европейского каталога в базе данных NASA Exoplanet Archive [1, 05.2019], открыто около 4071 экзопланет, из них 3043 планетные системы, остальные 659 системы с несколькими планетами.

Тема весьма актуальная, потому что планируются новые запуски космических аппаратов, которые должны обнаружить гораздо больше экзопланет, некоторые из которых, возможно, сопоставимы с Землей.

Исследования экзопланетных систем в настоящее время являются актуальным направлением в астрономии и небесной механике. Основная задача в изучении экзопланет – выявление закономерностей образования и эволюции планетных систем. Большой интерес представляют исследования, позволяющие смоделировать с достаточной степенью точности поведение реально существующих небесных объектов. В частности, экзопланет.

Открытие и подтверждение экзопланетных систем в основном выполнены космическими телескопами Kepler, K2, Corot, Cheops (Characterizing Exoplanets Satellite).

Эволюция планетной системы и эволюция центральной звезды этой планетной системы генетически взаимосвязаны. Вещество из протопланетного диска может периодически падать внутрь центральной звезды и сильно возмущать движение планеты [2-4].

На ранних стадиях эволюции так же имеет большое значение аккреция из протопланетного диска на планеты, вследствие чего происходит рост массы планеты, преимущественно неизотропным образом.

Из-за переменности масс, размеров и формы небесных тел становится гравитационная И ньютоновский переменной их связь потенциал взаимодействия оказываются явно зависящими от времени. Эти факторы существенно влияют на их динамическую эволюцию [4, с.681-682-5]. На некоторых этапах эволюции гравитирующих систем эффекты нестационарности тел, входящих в систему, становятся ведущим фактором, и дальнейший ход событий определяется состоянием системы в конце этого этапа. Исследование двухпланетной задачи трех тел с массами, изменяющимися анизотропно В различных темпах, В частности, рассматривается в работах [6-17].

До конца XIX века задачи в небесной механике решались только для стационарных небесных тел. Дифференциальное уравнение относительного тел движения для задач двух тел с переменными массами впервые применил Гильден 1884 года.

Дальнейшие исследования В.Г. Фесенкова, Г.М. Идлиса, Т.Б. Омарова, J.D. Hajidemetriou, Л.Г. Лукьянова, Е.Н. Поляховой, А.А. Бекова, А. Deprit, L. Floria и др. показали особую значимость нестационарных небесномеханических модельных задач в исследовании природы нестационарных космических систем.

В 80-х годах прошлого века многие теоретики решали задачи по небесной механике гравитирующих систем и активно изучали переменность масс гравитирующих тел. Омаров Т.Б. исследовал динамику широких двойных звезд с интенсивными корпускулярными излучениями [9, с.51]. Была решена задача двух тел, движущихся внутри гравитирующего пылевидного вещества. Параллельно с Омаровым Т.Б. аналогичные исследования были проведены профессором J.D. Hajidemetriou [10, с.135-160]. В результате параллельных работ в историю динамической астрономии вошли такие понятия как «элементы Омарова- Hajidemetriou».

В статье Morbidelli A. [18] рассматривается модель динамической эволюции планетных систем. В ней обсуждается, что динамическая эволюция возможно объясняется присутствием газа в протопланетном диске, когда газ

выветривается из протопланетного диска, то соответственно динамическая эволюция планетных систем заканчивается.

В работе Rajib M. и других авторов [19] исследуется наличие резонансов среднего движения в экзопланетных системах Kepler-62, HD 200964 и Kepler-11. Наличие резонансов среднего движения в экзопланетных системах является новым захватывающим полем небесной механики, которое позволяет изучать динамическое поведение экзопланетных систем в зависимости от времени эволюции орбитальных элементов планет. В частности, изучить влияние планетных возмущений на большую полуось и эксцентриситет. Авторы, используя разложение возмущающей функции задачи трех тел и аналитический подход, решают уравнения движения. Для трех экзопланетных систем Kepler-62, HD 200964 и Kepler-11 построены графики развития резонансных углов и обнаружено, что они колеблются вокруг постоянного значения, т.е планеты в этих системах имеют резонансы средних движений.

Chernov S.V., Ivanov P.B., Papaloizou J.C.B. [20]. и другие изучали внесолнечные системы, в которых экзопланета находится вблизи своей центральной звезды и происходит аккреция вещества, что влияет на динамическую эволюцию системы. В основном рассматривались родительские звезды главной последовательности. Рассмотрены несколько звезд с горячими спутниками Юпитера. Показано, что линейный механизм излучения недостаточно эффективен.

В своей работе [21] D. Ehrenreich и J.M. Desert исследовали скорость потери масс горячих Юпитеров при малых орбитальных расстояниях от родительской звезды. Они получили количественную оценку потери массы, которая происходит в процессе нагрева от центральной звезды, этот процесс наблюдаются во время планетарных транзитов в ультрафиолетовых диапазонах. По их результатам скорость потери масса составляет от 10^6 до 10^{13} г×с⁻¹. По полученным результатам такие экзопланеты как WASP-12b, WASP-17 b в течение 1 года полностью испарятся.

Ida S., Lin D.N.C. [22] показали, что распределения массы и большой полуоси, полученные в их моделях для газовых гигантов, согласуются с распределениями известных внесолнечных планет. Отметили, что значительная часть (90-95%) планет, мигрировавших в пределах 0,05 а.е., должна была погибнуть, а долговременное динамическое взаимодействие между планетами различных масс может привести как к возбуждению эксцентриситета, так и к рассеянию планет на большие полуосные оси. Эти эффекты должны быть включены в будущие модели.

В Солнечной системе все тела вращаются вокруг одного массивного тела, в нашем случае рассматривается экзопланетная система (в центре родительская звезда и вокруг вращаются внутренняя и внешняя планеты), и все сводится к задаче двух тел, для которой решение есть. Ясно, что если два массивных тела притягивают друг друга, то между и первым и вторым есть дополнительные взаимодействия, и это как-то влияет на движение каждого тела по эллипсу вокруг центрального тела. В случае постоянных масс соответствующие теории хорошо разработаны в работах Шарлье [23] и Мюррей К., Дермотт С. [24].

Наша Солнечная система считается достаточно проэволюционировавшей системой (4,5 млрд.лет). У всех планет Солнечной системы орбиты близки к круговым $e \approx 0$, кроме орбиты Меркурия. У Меркурия e = 0.2, наклонение плоскости орбиты 7 градусов. У хорошо проэволюционировавших систем происходит так называемое «вымораживание» орбит (устойчивые орбиты концентрируется в одной плоскости вблизи плоскости экватора звезды) [6]. У больших планет Солнечной системы, что особенно хорошо видно на примере у Сатурна, «вымораживание» орбит уже произошло.

Во многих экзопланетных системах мы наблюдаем большие разбросы наклонов плоскостей орбит к экватору звезды, что может свидетельствовать о различных эволюционных треках таких систем.

В работе Veras Dimitri и других [25] рассматривается планета вокруг коричного карлика, движение которого возмущенно кометой или астероидом. Приводятся все орбитальные элементы, долгота и широта родительской звезды, скорость потери массы. Они утверждают, что изотропную потерю массы можно использовать для моделирования движения планет на расстояниях сотен астрономических единиц.

Орбиты внесолнечных планет сильно различаются по величине эксцентриситета и по величине наклонения. Формирования внесолнечных планет впрямую зависит от массы центральной звезды [26-29]. Выяснилось, что распространенность планет-гигантов быстро растет с увеличением массы звезд. Также оказалось, что планеты у звезд промежуточный массы (1.5-3 массы Солнца) в большинстве своем массивны и находятся на широких орбитах с малым эксцентриситетом [26, с.63].

Планеты Солнечной системы движутся почти по круговым орбитам. В противоположность этому, многие массивные экзопланеты газовых гигантов движутся по сильно вытянутым эллиптическим орбитам. Знание распределения эксцентриситета в системах малых планет важно, поскольку оно содержит информацию о формировании и эволюции планеты и влияет на ее обитаемость.

Vincent Van Eylen и Saymon Albrecht [27] исследовали малые планеты в кеплеровских многопланетных системах, используя метод, основанный на втором законе Кеплера, который связывает длительность планетарного пролета с его орбитальным эксцентриситетом, если известна звездная плотность. Ими получено, что эксцентриситет планет в многопланетных системах Кеплера является низким и может быть описан распределением Рэлея с $\sigma = 0,049 \pm 0,013$.

Robert A. Wittenmyer, Jones M.I., Horner J. at all [28]. Поиск Пан-Тихоокеанской планеты VII. Самая эксцентричная планета, вращающаяся вокруг гигантской звезды. По наблюдениям радиальной скорости показали присутствие кандидата на планету Jup 4M, вращающегося вокруг гиганта K HD 76920. Эксцентриситет HD 76920b имеет орбитальный эксцентриситет 0,856 ± 0,009, что делает его самой эксцентричной из известных планет, вращающихся вокруг развитой звезды.

За последние несколько лет несколько гигантских транзитных планет (Р ≤ 10 дней) были обнаружены вокруг гигантских звезд благодаря высокоточным фотометрическим данным, полученным вначале миссией Кеплера, а затем ее двухколесным расширение К2. Эти новые открытия позволили впервые изучить орбитальные свойства и физические параметры этих интригующих и неуловимых субзвездных спутников. В статье Jones M. I., Brahm R., Espinoza N. [29] сообщается о независимом открытии транзитной планеты в поле 10 миссии K2, определены орбитальные параметры K2-132 b, полученные со всеми доступными данными для системы: P = 9,1708 ± 0,0025 d, e = 0,290 ± 0,049, Mp = 0,495 ± 0,007 МДж и Rp = 1,089 ± 0,006 РДж. Это пятая известная планета, вращающаяся вокруг любой гигантской звезды с <0.1, и самая эксцентричная среди них, что делает K2-132 b очень интересным объектом.

Perminov. A.S., Kuznetsov, E.D. [30] качественно исследовали орбитальную эволюцию планет в трех экзопланетных системах HD 39194, HD 141399 и HD 160691, используя усредненную теорию движения. Результаты эволюции орбиты были использованы моделирования выявления для начальных условий, приводящих к экстремальному росту эксцентриситетов и наклонений, что может привести к потере устойчивости и нарушению функционирования планетной системы. Авторы провели поиск резонансных областей для этих трех планетных систем и определили соответствующие граничные значения планетарных масс и большой полуоси, варьируя указанные параметры, они сделали выводы о наличии резонансов средних движений и их границ.

Актуальность темы

До открытия первой экзопланеты в 1995 году Солнечная система считалась единственной планетной системой во Вселенной. У всех планет Солнечной системы орбиты близки к круговым е≈0, кроме орбиты Меркурия, у которого е=0.2, наклонение орбиты - 7⁰.

Запуски различных космических аппаратов – Corot (2006), Kepler (2009), Gaia (2013), TESS (2018), Cheops (2020) за последние 25 лет позволили открыть большое количество (4174-29.01.2020) внесолнечных объектов (экзопланет), некоторые из которых сопоставимы с Землей.

Актуальной проблемой современной астрофизики, а также, теоретической и небесной механики, является отсутствие объяснения незначительного увеличения значений эксцентриситетов и наклонений в экзопланетных системах. Одной ИЗ возможных причин может быть анизотропное изменение масс центральной звезды и планет, что естественно влияет на динамическую эволюцию системы. Астрофизические исследования позволяют определить изменение со временем массы, размеров, формы центральной звезды и орбитальных элементов планет на основе наблюдений.

В данной диссертации в небесно-механическом аспекте с использованием известных математических моделей исследуются эффекты влияния

переменности масс на орбитальные элементы планеты, чтобы понять природу динамической эволюции планетных систем.

Цель работы – исследовать систему из трех взаимогравитирующих сферических небесных тел, содержащую центральную звезду и две планеты, с учетом анизотропного изменения массы, которое приводит к появлению реактивных сил, действующих на тела рассматриваемой системы, и выявить эффекты влияния переменности масс на орбитальные элементы планеты.

Задачи исследования

1 Исследовать динамику системы, состоящей из трех взаимогравитирующих сферических небесных тел с массами, изменяющимися анизотропно, получить выражения для реактивных сил в относительной системе координат, связанной с центральной звездой.

2 В оскулирующих элементах на базе апериодического движения по квазиконическому сечению в переменных Пуанкаре и в аналогах элементов Кеплера разработать алгоритм разложения возмущающей функции в степенной ряд по малым параметром e_j и i_j с требуемой точностью для двухпланетной задачи трех тел с массами, изменяющимися анизотропно в различных темпах.

3 Вывести эволюционные уравнения, определяющие поведение параметров орбиты, в аналогах второй системы переменных Пуанкаре, и эволюционные уравнения в аналогах элементов Кеплера в форме Лагранжа.

4 Выбрать экзопланетные системы для исследований. Получить численные решения эволюционных уравнений в аналогах второй системы элементов Пуанкаре и в аналогах элементов Кеплера, используя уравнения возмущенного движения в форме Лагранжа и выбирая значения параметров системы по данным наблюдений избранных экзопланет.

5 Исследовать взаимосвязь между наличием больших эксцентриситетов и наклонений орбит экзопланет с анизотропным изменением масс тел в этих системах.

Объекты исследования: динамика эволюции нестационарных экзопланетных систем.

Предмет исследования: математические модели, описывающие динамику эволюции нестационарных экзопланетных систем с центральной звездой, внутренней и внешней планетами.

Метод исследования

Исходными для использования теории возмущений являются уравнения движения в относительной системе координат с началом в центре «родительской» звезды.

Уравнения движения исследуются методами теории возмущений, разработанными для нестационарных систем. Используются методы теории возмущений на базе апериодического движения по квазиконическому сечению.

10

Для анализа динамики эволюции нестационарных экзопланетных систем используются современные методы компьютерной алгебры и численные методы, а для их реализации использованы система Mathematica.

Основные положения, выносимые на защиту

1 Построена математическая модель системы, состоящей из трех взаимогравитирующих сферических небесных тел с массами, изменяющимися анизотропно, получены выражения для реактивных сил в относительной системе координат, связанной с центральной звездой.

2 Разработан алгоритм аналитического вычисления возмущающей функции в виде разложения в степенной ряд по малым параметром e_j и i_j с требуемой точностью для двухпланетной задачи трех тел с массами, изменяющимися анизотропно в различных темпах, с использованием переменных Пуанкаре и аналогов элементов Кеплера.

3 Получены эволюционные уравнения, определяющие поведение параметров орбиты в аналогах второй системы переменных Пуанкаре и эволюционные уравнения в аналогах элементов Кеплера в форме Лагранжа.

4 Показано, что в обоих случаях получаются подобные результаты, что подтверждает правильность обоих подходов. Однако уравнения возмущенного движения в форме Лагранжа в аналогах элементов Кеплера позволяет формально проводить разложения возмущающих функций в ряды с любой требуемой точностью и получать новые эффекты.

5 Применение обоих подходов показывает, что анизотропное изменение масс приводит незначительного увеличения эксцентриситета и наклонения. Нужно отметить, что задачу можно решать в различных переменных, но в любом из рассмотренных случаев предполагается, что эксцентриситеты и наклонения малы, что позволяют использовать разложение возмущающих функций в ряды по этим переменным.

6 Получены численные решения эволюционных уравнений в аналогах второй системы элементов Пуанкаре и в аналогах элементов Кеплера, используя уравнения возмущения в форме Лагранжа, для экзопланетной системы GJ180: GJ 180 b, GJ 180 c., которая была выбрана для исследований по данным наблюдения избранных экзопланет.

7 Для системы GJ180: GJ 180b, GJ 180c показано, что эксцентриситет в анизотропном случае увеличивается от 0,11 до 0,14 для GJ180b, и от 0,09 до 0.16 - для GJ180b. Наклонения практически не меняются, когда реактивные силы действуют в плоскости орбит. При изменении скорости вылетания частиц по V_z можно наблюдать изменения, и это естественно, так как плоскость орбиты поворачивается. Аналог долготы восходящего узла меняется аналогичным образом.

Научная новизна

Новизна работы заключается в том, что:

1 Разработан алгоритм фактического разложения возмущающей функции в степенной ряд с точностью до любого порядка относительно малых параметров для двухпланетной задачи трех тел с использованием методов компьютерной алгебры и современной системы символьных вычислений Mathematica.

2 Получено численное решение эволюционных уравнений динамической эволюции экзопланетной системы GJ 180: GJ 180b, GJ180c.

3 Выявлены эффекты влияния переменности масс на орбитальные движения реальных экзопланетных систем. Они имеют принципиальное значение в эволюции звездных систем с переменными массами. Временные изменения масс существенно влияют на орбитальные движения, что, естественно, оказывает влияние и на динамическую эволюцию вращательных движений небесных тел.

Теоретическая и практическая значимость исследования

Результаты, полученные в диссертационной работе, могут быть применены для исследования динамической эволюции нестационарных систем в задачах трех и более тел в небесной механике.

Результаты можно использовать для изучения процессов формирования и эволюции систем, содержащих несколько планет.

Результаты исследования позволят выделить особенности эволюции планетных систем около «старых» звёзд – красных гигантов, обладающих высоким уровнем потери массы в анизотропной конфигурации и с различными темпами.

Личный вклад автора

Автор диссертации лично провел статистический анализ данных наблюдений, представленных в европейском каталоге (The Extrasolar Planets Encyclopedia) по экзопланетным системам, на основе которого были выбраны объекты для исследования их динамической эволюции.

С использованием методов компьютерной алгебры и современной системы символьных вычислений Mathematica выполнено разложение возмущающей функции в степенной ряд относительно малых параметров для двухпланетной задачи трех тел, на основе разработанного ранее аналитического алгоритма.

Результаты анализа были получены лично соискателем. Постановка задачи и обсуждение результатов проводились совместно с научными консультантами.

Достоверность результатов

Достоверность научных вывод работы подтверждается согласованностью с теоретическими моделями, выводами о природе аналогичных объектов, полученными другими авторами.

Апробация работы

По материалам диссертационной работы опубликовано 10 печатных работ.

База данных Thomson Reuters или Scopus:

1. Prokopenya A., Minglibayev M., Shomshekova S. Applications of Computer Algebra in the Study of the Two-Planet Problem of Three Bodies with Variable Masses // Programming and Computer Software. – 2019. – Vol. 45. – No. 2. – P.73–80. [DOI:10.1134/S0361768819020087] [Impact Factor = 0.75.]. Q4. СіteScore-23-процентиль.

2. Prokopenya A., Minglibayev M., Shomshekova S. Computing Perturbations in the Two-Planetary Three-Body Problem with Masses Varying Non-Isotropically at Different Rates // Mathematics in Computer Science. – 2020. – Vol.14 – No. 2. – P.241–251. https://doi.org/10.1007/s11786-019-00437-0. [Impact Factor = 0.75.]. Q3. CiteScore-33-процентиль.

3. Прокопеня А.Н., М.Дж. Минглибаев М.Дж., Шомшекова С.А. Применение компьютерной алгебры в исследованиях двухпланетной задачи трех тел с переменными массами // Программирование – 2019. - №2. – С.58-65. DOI:10.1134/SO132347419020092

Статьи в изданиях, рекомендованных ККСОН образования и науки МОН РК:

1. Минглибаев М. Дж., Маемерова Г.М., Шомшекова С.А. Дифференциальные уравнения относительного движения нестационарных экзопланетных систем //Вестник КазНПУ, серия физико-математическая. – 2017. – Т.57. №1. – С.141 -147.

2. Minglibayev M., Shomshekova S. Analytical expressions of the perturbing functions in two planetary three - body problem with masses varyng non-isotropically when available for reactive forces // Известия НАН РК, серия физикоматематическая. – 2018. –Vol. 319. №3. – С.134-163.

3. Минглибаев М., Шомшекова С. Статистический анализ экзопланетных систем по спектральным классам звезд // Вестник КазНУ им. аль-Фараби. Серия физическая. (Recent Contribution to Physics). – 2019. – Т. 68. № 1. – С.20-28.

Апробация работы и публикации в материалах международных конференций:

1. Minglibayev M., Prokopenya A., Shomshekova S. Computing Perturbations in Two-Planetary Three-Body Problem with masses varying Non-isotropically at different rates // International ConferenceonApplicationsof ComputerAlgebra (ACA-2018). – Universided de Santiago de Compostela. – 2018. – P.47.

2. Минглибаев М., Прокопеня А., Шомшекова С. Исследования вековых возмущений в двухпланетной задаче трех тел с переменными массами // Международная конференция «Астрономия 2018», приуроченная к XIII съезду Международной общественной организации «Астрономическое общество». – Москва. – 2018. – С. 232-235. <u>10.31361/eaas.2018-1.043</u>.

3. Minglibayev M., Prokopenya A., Mayemerova G., Shomshekova S. On expansion of the perturbing functions in two-planetary three-body problem with masses varying non-isotropically at different rates // Computer Algebra Systems in Teaching and Research. – Siedlce. – 2018. Vol. VII. – P. 37-44.

4. Минглибаев М., Шомшекова С. К динамике планет в экзопланетных системах с родительской звездой переменной массы // Международная конференция «Современная звездная астрономия-2017». – Екатеринбург. – 2017. Получен сертификат.

5. Шомшекова С. Статистическое исследование нестационарных экзопланетных систем по спектральным классам центральной звезды // Материалы международной конференции студентов и молодых ученых «Фараби элемі». – Алматы. – 2017. – С.97.

Связь темы диссертации с планами научных работ

Диссертационная работа выполнялась в соответствии с планами фундаментальных научно-исследовательских работ КН МОН РК «Грантовое финансирование научных исследований» по теме «Исследование переменности звезд и процессов обмена веществом с газопылевым диском». А также, с планами работ по программе целевого финансирования Аэрокосмического комитета Министерства цифрового развития оборонной и аэрокосмической промышленности Республики Казахстан по теме «Мониторинг и исследование космических объектов, выбранных для внеатмосферных наблюдений».

Работа выполнена по программе подготовки докторов PhD MOH PK.

Структура и объем диссертации

Диссертационная работа состоит из титульного листа, содержания, обозначений и сокращений, 5 разделов, которые разделены на подразделы, заключения, списка использованных источников 81. В работе 26 рисунков. Общий объем работы, содержит 119 страниц, в том числе из одного приложения на 14 страницах.

Автор выражает глубокую благодарность отечественному научному консультанту профессору Минглибаеву М.Дж. и зарубежному научному консультанту профессору Прокопеня А.Н. за постановку проблемы и постоянное внимание в ходе выполнения и написания настоящей работы.

Авторы выражают благодарность сотрудникам Астрофизического института им. В.Г. Фесенкова за полезные замечания по диссертации на соискание ученой степени доктора философии (PhD).

1 АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ НАБЛЮДЕНИЙ ЭКЗОПЛАНЕТНЫХ СИСТЕМ

1.1 Основные характеристики экзопланетных систем

Экзопланеты — это планеты, обнаруженные за пределами Солнечной системы. Они могут быть самые разные по составу и размерам, по принадлежности к обитаемой зоне, в гравитационных ловушках, пригодные и не пригодные для жизни. Статистический анализ данных проведён по совокупности известных данных с использованием каталогов [1, 27, 31-34].

Известно, что звезды рождаются из большого газопылевого облака в гравитационного дальнейшего результате сжатия И его уплотнения. Формирующаяся звезда окружена газопылевым диском, в котором медленно установливается равновесие между силой гравитации и давлением газа. Внутреняя температура звезды увеличивается, запускается И процесс термоядерного синтеза, в результате чего звезда «зажигается». Одновременно в диске формируются первые небольшие протопланеты. С течением времени, в результате столкновения протопланет и образования сферических тел больших размеров, возникают планеты [35-37].

Рабочей группой Международного Астрономического союза (МАС), было предложено ввести границу по массе между планетами и звездами (М = 13 масс Юпитера). Эта масса считается достаточной для поддержания реакции горения водорода. Иными словами, планета – это объект с массой, меньшей 13 масс Юпитера (масса Юпитера 2×10^{27} кг), а объект с большей массой считается коричневым карликом или звездой [2, с.686-688].

Экзопланеты по массе делятся на три типа: Планеты – гиганты, такие как Юпитер или Сатурн (с массой больше 60 масс Земли или 0,19 масс Юпитера); Нептуны, такие как Уран и Нептун (с массой больше 7 масс Земли); Планеты земного типа, такие как Земля или Венера (масса меньше 7 масс Земли).

Существуют определенные условия, чтобы сделать планету пригодной для жизни земного типа. Размер и масса планеты определяют, может ли она поддерживать атмосферу [26, с.64-66, 35, с.1-3]. Самые горячие звезды имеют температуру до 35 000 К. Звезды с температурой 10 000 К белые, с температурой 6000 К жёлтые, в том числе наше Солнце, звёзды с температурой 3000—3500 К красные класса М.

Обнаружение планет по массам подобных Земле, еще является значительной проблемой. Но уже в ближайшем будущем готовятся миссии по выведению на орбиту космических аппаратов с высокой чувствительностью, на которые возлагаются программы по обследованию сотен тысяч звезд и обнаружению планетных тел соразмерных нашей Земле.

Телескоп TESS, запущенный NASA весной 2018 года, открыл более 280 планет. Три подтвержденные экзопланеты, найденные TESS, это Pi Mensae *c*, находящаяся от нас примерно в 60 световых годах и превышающая по размерам Землю приблизительно в два раза; LHS3884b — каменистая планета, в 1,3 раза

крупнее Земли и располагающаяся от нас расстоянии 49 световых лет; HD21749b, превосходящая по размерам Землю примерно в три раза и в 23 раза более массивная (возможно в ее системе находится еще одна неподтверждённая планета).

В работе Mattew et al. [36] провели оценку устойчивости зоны обитаемости одиночных планетных систем типа Юпитер и выделили 20 экзопланет, которые имеют абсолютно устойчивые обитаемые зоны и могут быть потенциальными аналогами Солнечной системы. На Рисунке 1.1 отмечены экзопланеты с разными значениями температуры центральной звезды и большой полуоси планеты.

Рисунок 1.1 - Распределение экзопланет по эффективной температуре центральных звезд и по большой полуоси орбит [31, 29.05.2019]

1.2 Анализ данных каталогов экзопланетных систем по спектральным классам центральной звезды

По значениям эффективной температуры центральной звезды можно определить, к какому классу относится та или иная звезда, вокруг которой вращается экзопланета. Оказалось, что большинство известных экзопланет вращаются вокруг звезд спектральных классов F, G, K и M.

Наше Солнце относится к классу G. Массы звезд этого класса составляют от 0,8 до 1,7 солнечной массы. Обнаружено, что звезды класса G имеют наибольшее количество экзопланетных систем. На Рисунке 1.2 приводится диаграмма распределения подтвержденных экзопланет по спектральному классу центральных звезд, построенная по данным каталога «The Extrasolar Planets Encyclopedia» [34, c.24].

Формирование внесолнечных планет напрямую зависит и от массы центральной звезды. На Рисунке 1.3 представлена диаграмма, показывающая связь массы родительской звезды и орбитального периода планеты, на которой выделяется плотная группа звёзд с большим разбросом по орбитальным периодам планет от 0.5 до 7000 суток и с небольшим разбросом по массам звёзд примерно в интервале от 0.5 до 1.5 масс Солнца. Всего обнаружено 2178 подтвержденных объектов вокруг центральной звезды с массами $(0,02 - 1) M_{Sol}$, 1573 объектов вокруг центральной звезды с массами 1 -2 M_{Sun} и 47 вокруг центральной звезды с массами 2 - 3 M_{Sun} . Очевидно, что Солнце и по классу звезды (Рисунок 3.1), и по массе (Рисунок 4.1) попадает в самую многочисленную группу по статистике открытых экзопланет.

Рисунок 1.2 - Распределение экзопланет по спектральным классам центральной звезды [34, с.24-25]

Рисунок 1.3 - Диаграмма орбитальный период - масса центральной звезды для подтверждённых экзопланет [31, 28.05.2019]

Существуют определенные условия, чтобы сделать планету пригодной для жизни земного типа. На эти условия влияют несколько ключевых факторов. Размер и температура звезды, а также орбита планеты во многом определяет

состояние жидкой воды на поверхности. Ранее мы отметили, что на орбитах близких к звезде вода испаряется, а на далёких орбитах может существовать только в виде льда. Диапазон расстояний, благоприятных для существования жидкой воды достаточно мал. Размер и масса планеты определяют, может ли она поддерживать атмосферу [37, с.238].

На Рисунке 1.4 показано распределение орбитальных периодов экзопланет в зависимости от массы в единицах массы Юпитера. Видно, что кроме рассеянного поля точек выделяются 3 группы:

1) группа справа внизу концентрируется в интервале масс (0.2 - 4) M_{Jup} с центром вблизи значения $1M_{Jup}$, с периодом около 3 суток с небольшим разбросом периодов от 1 до 5 суток;

2) группа слева внизу концентрируется вблизи значения (0.02-0.03) М_{Jup} с периодом около 10 суток с большим разбросом от 1 до 100 суток;

3) группа справа вверху концентрируется вблизи значения (2 - 3) M_{Jup} с периодом около 600 суток с большим разбросом от 100 до 10000 суток.

Большинство открытых экзопланет имеют массы в интервале от 1 до 3 масс Юпитера (1-я и 3-я группы на Рисунке 1.4).

Рисунок 1.4 - Диаграмма орбитальный период - масса планеты для подтверждённых экзопланет [31, 29.05.2019]

Среди открытых экзопланет обнаружено 1800 объектов с массами (0 – 14) M_{Jup} , то есть собственно планет. Далее коричневые карлики разных масс:103 с массами (14 -28) M_{Jup} , 45 с массами (28 – 42) M_{Jup} , 32 с массами (42 – 56) M_{Jup} , и 22 с массами 56 -70 M_{Jup} [39-40]. В центре 2-й группы оказались объекты с массой (0.02-0.03) M_{Jup} с малым периодом, то есть суперземли, превосходящие массу Земли в 5-10 раз.

Необходимо отметить особенность 1-й группы Юпитеров. Несмотря на значительный разброс по массам (0.2 - 4) М_{Јир}, разброс по радиусам (правая

шкала) практически отсутствует. Радиусы планет концентрируются вблизи 0.75 М_{Jup}.

На Рисунке 1.5 видно, что разброс масс планет очень велик: от $0.001 M_{Jup}$ до $100 M_{Jup}$, в то время как массы звёзд, за редким исключением, сосредоточены в интервале (0.6 -2) M_{Sun} , то есть вблизи 1-й массы Солнца. Тем не менее, некая тенденция увеличения массы планеты с увеличением массы звезды также прослеживается.

Рисунок 1.5- Диаграмма масса родительской звезды - масса планеты для подтверждённых экзопланет [31, 29.05.2019]

Планеты Солнечной системы движутся почти по круговым орбитам. Знание распределения эксцентриситета важно, чтобы понять условия формирования и эволюции планет. Эксцентриситет орбиты показывает степень вытянутости орбиты. У круговой орбиты он равен нулю, а с ростом эллиптичности стремится к единице. Для сравнения, у всех планет Солнечной системы эксцентриситет не превышает 0.1, лишь у Меркурия составляет 0.21.

Наклон орбиты является немаловажным параметром. Открытия прохождений планет по дискам звезд позволили найти наклонение орбит и дать надежные оценки размеров орбит, радиусов и масс ряда экзопланет [24, с.313-316].

Кроме того, местоположение обитаемой зоны экзопланет зависит от эксцентриситета. Зная распределение эксцентриситетов планет, подобных Земле, мы можем получить информацию о формировании и эволюции экзопланет. Vincent Van Eylen и Saymon Albrecht используя фотометрические данные, полученные космическим телескопом Кеплер для 74 землеподобных экзопланет, измерили их эксцентриситеты [27, с.4-7].

Brasser [40] и другие исследовали динамические факторы, которые могут повлиять на обитаемость землеподобных экзопланет. Они рассматривали важные ключевые факторы: а) стабильный климат; б) изменение сезонной температуры от низкой до высокой (<50⁰); в) вариации суточной температуры;

г) пространственное изменение температуры вдоль орбиты планеты; д) низкоамплитудные колебания наклонения; е) сезонные изменения наклонения;
з) скорость вращения и другие факторы.

На Рисунке 1.6 показано распределение экзопланет по аргументу перицентра и по наклонению. Карра And b: i=121°, ω =129,5°; betta Pic b: i=88,87°, ω =189,3°; PSR1247 12 d: i=47°, ω =108,3°; Kepler-46 c i=87,25°, ω =329,4°. Аргумент перицентра экзопланет меняется значительно. Например, самые маленькие значения у экзопланеты WASP-6 b: i=88,47°, ω =1,7° и большие значения аргумента перицентра у экзопланеты WASP-162 b: i=89,3°, ω =358,1° [34, c.25-26].

Рисунок 1.6 – Распределение экзопланет по аргументу перицентра и по наклонению [31, 22.01.2019]

В целом, распределение экзопланет по аргументу перицентра выглядит равномерным при концентрации наклонения к i=90°, что является следствием селекции наблюдений, поскольку наиболее доступные методы наблюдений: метод лучевых скоростей и метод транзитов эффективнее всего позволяют обнаружить орбиты, видимые «с ребра», то есть с наклонением, близким к i=90°.

Многие внесолнечные планеты - гиганты вращаются вокруг своих звезд с большими эксцентриситетами, например, экзопланета HD 80606b, которая движется по орбите с эксцентриситетом ~0.934. К настоящему времени обнаружено много экзопланет с небольшими эксцентриситетами (Рисунок 1.7). У большинства экзопланет наклонения лежат между 80 и 95 градусов [39, с. 86, -42], что также является следствием селекции наблюдений, дающих преимущество для орбит, видимых «с ребра», то есть с наклонением, близким к i=90°. При этом эксцентриситеты могут быть различными. Например, НАТS- 67 b: i=79,02°, e=0,014 и HD 80606 b: i=89,285°, e=0,93366 [34, c.24].

Происхождение эксцентриситетов внесолнечных планет-гигантов может быть вызвано действием различных механизмов [43-49]: гравитационного взаимодействия между соседними планетами-гигантами, взаимодействия планеты-гиганта с планетезималями на ранних стадиях образования планетной системы, влияния дополнительного звездного или планетного компаньона, и т.п. Последний эффект в ряде случаев кажется наиболее интересным.

Рисунок 1.7 - Распределение экзопланет по эксцентриситету и по наклонению [31, 22.01.2019]

Средняя скорость некоторых планет с высоким эксцентриситетом показывает дрейф, согласующийся с присутствием долгопериодического компаньона. Гравитационное влияние более удаленного компаньона может вызвать наблюдаемый высокий орбитальный эксцентриситет. Таким образом, требуется, по крайней мере, еще один дополнительный механизм для воспроизведения наблюдаемого распределения по эксцентриситетам. Фактически, предложенных возникновения ни олин ИЗ механизмов эксцентриситета состоянии объяснить наблюдаемое не В В одиночку распределение эксцентриситетов внесолнечных планет [2, с.690].

Для объяснения существования «горячих юпитеров», обращающихся вокруг звезды по очень низким, практически круговым, орбитам сейчас используется так называемая теория миграции — медленное сползание планет с высоких орбит, где они могли образоваться, на низкие, околозвездные [50].

Среднее значение эксцентриситета, полученное путём усреднения по 90 планетам, находящимся на высоких орбитах с большой полуосью орбиты более 0.16 а.е. оказалось, равным 0.32, в то время как усредненный эксцентриситет для планет Солнечной системы становит только 0.06.

Для объяснения происхождения таких больших эксцентриситетов экзопланетных систем уже придуманы различные механизмы, главные из

которых — гравитационное взаимодействие планет. Недавние исследования показали, что вытянутые и изменчивые орбиты характерны для систем, где происходит существенный по массе выброс вещества звезд.

После запуска космического телескопа «Кеpler» в 2009 году, было обнаружено много экзопланетных систем, среди которых оказались и планетные системы около двойных звёзд. По результатам исследований оказалось, что вокруг двойных звезд планетные орбиты более устойчивы и, кроме того, наблюдение двойных систем помогает нам понять эволюцию звезд и планет. Известно более 200 экзопланет вокруг двойных звездных систем [32, 28.11.2017, 46, c.21].

Если взять количество известных внесолнечных планет с вытянутыми орбитами, то подобная ситуация выброса вещества выглядит более обычным явлением, чем длительное сохранение стабильности, свойственное нашей планетной системе. Вполне возможно, что в этом процессе возле родительского светила остается намного меньше планет, чем выбрасывается в межзвездное пространство, где такие «отшельники» могут миллионы лет скитаться, пока их не захватит гравитация какой-то иной звезды. Такие «бездомные» планеты уже обнаружены [31, 22.01.2019].

Надо также учитывать, что большой эксцентриситет приводит к пересечению орбит. Более массивные тела как бы постепенно «очищают» ближайшее пространство, поглощая меньшие тела. Поэтому, очень возможно, планетам с массами порядка Земли труднее «выжить» по соседству с планетами-гигантами на вытянутых орбитах.

В ходе эволюции масса звезд меняется и, проходя из одной стадии к другой, они значительно теряют массу. Изменение массы звёзд происходит на каждом этапе эволюционных изменений по диаграмме Герцшпрунга-Рассела.

Механизмы истечения масс различаются для звезд разных спектральных классов каждом этапе эволюционных изменений. Например, у Солнца потеря вещества невелика, она составляет 3×10^{-14} M_{Sun} в год за счёт солнечного ветра. Время жизни Солнца около 5 млрд лет и потеря вещества за счет солнечного ветра не сильно влияет на эволюцию звезд типа Солнца [3, c.113-114].

Наблюдения показывают, что у молодых звезд типа Т Таи потеря вещества составляет 10⁻⁸ M_{Sun} в год. У горячих звезд спектрального класса О и В, звезд типа Вольфа - Райе, РСуд, потеря массы достигает (10⁻⁸ - 10⁻⁵) M_{Sun} в год. У звезд этого класса масса обычно ≈ 30 M_{Sun} и время жизни составляет $10^6 - 10^7$ лет. Потеря массы такого количества вещества на данном интервале времени, существенно влияет на эволюцию. Звезды позднего спектрального класса у красных гигантов и сверхгигантов по оценкам [7, с.8-17] составляет (10⁻⁶ - 10⁻³) M_{Sun} в год. Такие существенные потери масс центральной звезды сильно влияют на динамическую эволюцию соответствующих экзопланетных систем [51-55].

1.3 Основные результаты, полученные в разделе 1

В результате проведенного анализа выбрали экзопланетные системы для исследования динамической эволюции:

a) Характерные для нестационарных экзопланетных систем вытянутые и изменчивые орбиты, где происходит существенный по массе выброс вещества звезды, то есть темп потери массы порядка 10⁻⁶ М₀/год

б) В соответствии с задачей 3-х тел выбираем системы, у которых уже обнаружены 2 планеты и вычислены все необходимые орбитальные параметры.

в) Планеты системы движутся по орбитам с малым эксцентриситетом и наклоном, и не имеют массивных планет в зоне эффективной земной орбиты

Анализ данных показал, что среди звёзд главной последовательности потеря массы наибольшая у М-звёзд. Например, звёзды Вольфа-Райе не рассматриваем, хотя потеря массы у них больше, поскольку около этих звёзд нет условий для образования планет. В таблице 1 представлен список экзопланетных систем, удовлетворяющих данным критериям.

Таблица 1 - Избранные экзопланетные системы с большими темпами потери массы родительской звезды

Родитель-ская	Sp	M _{Jup}	M_{Sun}	e	a	ω	Т
звезда/				планеты	(AU)	deg	day
планета							
GJ 180 b	M2V	0.0261146	0.43	0.11	0.103	11.46	17.38
				(-0.11 +0.14)	(-0.014,+0.006)		
GJ 180 c		0.0201366	0.43	0.09	0.129	243.91	24.329
				(погрешность -			
				0.09 +0.2)			
GJ 682 b	M3.5	0.0138439	0.27	0.08	0.08	85.94	17.478
				(погрешность -			
				0.08 +0.19)			
GJ 682 c		0.0273641	0.27	0.1	0.176	320.84	57.320
				(погрешность -			
				0.1 +0.19)			
GJ 433 b	M1.5 V	0.01667	0.48	0.04	0.06	309.39	7.3697
				(погрешность -			
				0.04 +0.16)			
GJ 433 c		0.14	0.48	0.17 (+/-0.09)	3.6	206.0	3693
						(±36.9)	
GJ 649 b		0.328	0.54	0.3 (+/-0.08)	1.134	352	598.3
GJ 649 c	M1.5 V	0.03	0.54	0.2 (+/-0.14)	0.043	334	4.4762

Описание таблицы 1 – Sp - спектральный класс центральной звезды, M_{Jup} –масса планет (в массах Юпитера), M_{Sun} - масса центральной звезды (в массах Солнца), е – эксцентриситет, а – большая полуось в астрономических единицах, ω – аргумент перицентра в градусах, T- орбитальный период экзопланет в Земных сутках.

На текущий момент все необходимые наблюдаемые орбитальные параметры имеет система GJ 180 - GJ 180 b- GJ 180 c.

2 ДВУХПЛАНЕТНАЯ ЗАДАЧА ТРЕХ ТЕЛ С МАССАМИ, ИЗМЕНЯЮЩИМИСЯ АНИЗОТРОПНО

Наблюдательная астрономия интенсивно открывает внесолнечные планеты, это стимулирует многих астрономов и теоретиков исследовать динамику молодых систем, чтобы понять процесс формирования планет. На данный момент достаточно наблюдательных данных, но очень мало построенных моделей, интерпретирующих динамическую эволюцию экзопланетных систем.

В данном разделе рассматривается динамика экзопланетной системы, состоящей из трех взаимогравитирующих сферических небесных тел с переменными массами, где $m_0 = m_0(t)$ - центральная родительская звезда, $m_1 = m_1(t)$ - внутренняя планета и $m_2 = m_2(t)$ - внешняя планета с переменными массами.

2.1 Уравнения движения в абсолютной системе координат

Движение двух планет, в рамках задачи трех сферических тел (которые взаимодействуют как материальные точки) с переменными массами, изменяющимися анизотропно, при наличии реактивных сил, в абсолютной системе координат, описываются уравнениями Мещерского [56].

Расмотрим экзопланетную систему состоящися из трех взаимогравитирующих сферических небесных тел.

Рисунок 2.1 - Абсолютная система координат

Пусть, P_0 - центральная родительская звезда, P_1 - внутренная планета и P_2 - внешняя планета с переменными массами:

$$m_0 = m_0(t), \quad m_1 = m_1(t), \quad m_2 = m_2(t),$$
 (2.1)
 $m_0 >> m_1, \quad m_0 >> m_2$

Массы изменяются неизотропно в различных темпах [57-59], при этом

$$\frac{\dot{m}_0}{m_0} \neq \frac{\dot{m}_1}{m_1}, \qquad \frac{\dot{m}_0}{m_0} \neq \frac{\dot{m}_2}{m_2}, \qquad \frac{\dot{m}_1}{m_1} \neq \frac{\dot{m}_2}{m_2}.$$
(2.2)

При наличии реактивных сил, в абсолютной системе координат *ОХҮ*Z из уравнения Мещерского получим

$$m_j \ddot{\vec{R}}_j = grad_{\vec{R}_j} U + \vec{\Pi}_j, \quad \vec{V}_j = \vec{u}_j - \dot{\vec{R}}_j, \quad j = 0, 1, 2,$$
 (2.3)

$$\vec{\Pi}_j = \dot{m}_j \vec{V}_j \tag{2.4}$$

$$U = G\left(\frac{m_0 m_1}{R_{01}} + \frac{m_0 m_2}{R_{02}} + \frac{m_1 m_2}{R_{12}}\right),$$
(2.5)

где \vec{u}_j - абсолютные скорости отделяющихся частиц,

$$\vec{V}_j = \vec{u}_j - \vec{R}_j \neq 0, \quad j = 0, 1, 2$$
 (2.6)

 \vec{V}_{j} - относительные скорости отделяющихся частиц, \vec{R}_{j} - радиус-векторы центров сферических тел, \vec{R}_{ij} - взаимные расстояния между центрами сферических тел, *G* - гравитационная постоянная.

Следуя Л.Г. Лукьянову [43, с.115-132], считаем, что реактивные силы приложены к центру соответствующих сферических тел. Для конкретных небесных тел законы изменения масс (2.1-2.2) и относительные скорости отделяющихся частиц (2.6) определяются на основе наблюдений.

Поэтому будем считать, что величины (2.1), (2.6) известные.

2.2 Уравнения движения в относительной системе координат

Введем относительную систему координат $O_1 X_0 Y_0 Z_0$ с началом в точке O_1 центре родительской звезды P_0 , оси которой параллельны соответствующим осям абсолютной системы координат.

Рисунок 2.2 - Относительная система координат

В относительных координатах уравнения движения можно записать в виде:

$$\ddot{\vec{R}}_{01} = \frac{1}{\mu_{01}} \operatorname{grad}_{\vec{R}_{01}} U + \frac{\vec{\Pi}_1}{m_1} - \frac{\vec{\Pi}_0}{m_0}, \qquad \vec{R}_{01} = \vec{R}_1 - \vec{R}_0, \qquad (2.7)$$

$$\ddot{\vec{R}}_{02} = \frac{1}{\mu_{02}} \operatorname{grad}_{\vec{R}_{02}} U + \frac{\vec{\Pi}_2}{m_2} - \frac{\vec{\Pi}_0}{m_0}, \quad \vec{R}_{02} = \vec{R}_2 - \vec{R}_0, \quad (2.8)$$

$$\frac{1}{\mu_1} = \frac{1}{m_0} + \frac{1}{m_1} = \frac{m_0 + m_1}{m_0 m_1}, \quad \frac{1}{\mu_2} = \frac{1}{m_0} + \frac{1}{m_2} = \frac{m_0 + m_2}{m_0 m_2}$$
(2.9)

Обозначим

$$\vec{F}_1 = \vec{F}_1(t) = \frac{\vec{\Pi}_1}{m_1} - \frac{\vec{\Pi}_0}{m_0} = \vec{F}_1(F_{1x}, F_{1y}, F_{1z}) \neq 0, \qquad (2.10)$$

$$\vec{F}_2 = \vec{F}_2(t) = \frac{\vec{\Pi}_2}{m_2} - \frac{\vec{\Pi}_0}{m_0} = \vec{F}_2(F_{2x}, F_{2y}, F_{2z}) \neq 0, \qquad (2.11)$$

Перепишем уравнения (2.7), (2.8) в виде:

$$\ddot{\vec{R}}_{01} + G(m_0 + m_1)\frac{\vec{R}_{01}}{R_{01}^3} = grad_{\vec{R}_{01}}(U_{01} + F_{1x}X_1 + F_{1y}Y_1 + F_{1z}Z_1)$$
(2.12)

$$\ddot{\vec{R}}_{02} + G(m_0 + m_2) \frac{\vec{R}_{02}}{R_{02}^3} = grad_{\vec{R}_{02}} \left(U_{02} + F_{2x}X_2 + F_{2y}Y_2 + F_{2z}Z_2 \right)$$
(2.13)
$$U_{0i} = G \sum_{i \neq j}^2 m_j \left(\frac{1}{R_{ij}} - \frac{X_i X_j + Y_i Y_j + Z_i Z_j}{R_j^3} \right)$$
$$R_{ij} = \sqrt{\left(X_j - X_i \right)^2 + \left(Y_j - Y_i \right)^2 + \left(Z_j - Z_i \right)^2}$$
$$R_i = \sqrt{X_i^2 + Y_i^2 + Z_i^2}$$

2.3 Уравнения возмущенного движения в относительной системе координат

Обозначим

$$\vec{R}_{01} = \vec{R}_1 - \vec{R}_0 = \vec{r}_1 = \vec{r}_1 (x_1, y_1, z_1), \ \vec{R}_{02} = \vec{R}_2 - \vec{R}_0 = \vec{r}_2 = \vec{r}_2 (x_2, y_2, z_2), \ \vec{r}_2 - \vec{r}_1 = \vec{r}_{12}$$
(2.14)

Тогда уравнения (2.12-2.13) можно написать в виде

$$\ddot{\vec{r}}_{1} + G(m_{0} + m_{1})\frac{\vec{r}_{1}}{r_{1}^{3}} - \frac{\ddot{\gamma}_{1}}{\gamma_{1}}\vec{r}_{1} = Gm_{2}\left(\frac{\vec{r}_{2} - \vec{r}_{1}}{\left|\vec{r}_{2} - \vec{r}_{1}\right|^{3}} - \frac{\vec{r}_{2}}{r_{2}^{3}}\right) + \vec{Q}_{1} + \vec{P}_{1} , \qquad (2.15)$$

$$\vec{Q}_{1} = grad_{\vec{r}_{1}} \left(F_{1x} \, \mathbf{x}_{1} + F_{1y} \, \mathbf{y}_{1} + F_{1z} \, \mathbf{z}_{1} \right)$$
(2.16)

$$\vec{P}_{1} = -\frac{\ddot{\gamma}_{1}}{\gamma_{1}}\vec{r}_{1}, \quad \gamma_{1} = \frac{m_{0}(t_{0}) + m_{1}(t_{0})}{m_{0}(t) + m_{1}(t)} = \gamma_{1}(t), \quad (2.17)$$

$$\ddot{\vec{r}}_{2} + G(m_{0} + m_{2})\frac{\vec{r}_{2}}{r_{2}^{3}} - \frac{\ddot{\gamma}_{2}}{\gamma_{2}}\vec{r}_{2} = Gm_{1}\left(\frac{\vec{r}_{1} - \vec{r}_{2}}{\left|\vec{r}_{1} - \vec{r}_{2}\right|^{3}} - \frac{\vec{r}_{1}}{r_{1}^{3}}\right) + \vec{Q}_{2} + \vec{P}_{2}, \qquad (2.18)$$

$$\vec{Q}_2 = grad_{\vec{r}_2} \left(F_{2x} \, \mathbf{x}_2 + F_{2y} \, \mathbf{y}_2 + F_{2z} \, \mathbf{z}_2 \right), \tag{2.19}$$

$$\vec{P}_{2} = -\frac{\ddot{\gamma}_{2}}{\gamma_{2}}\vec{r}_{2}, \qquad \gamma_{2} = \frac{m_{0}(t_{0}) + m_{2}(t_{0})}{m_{0}(t) + m_{2}(t)} = \gamma_{2}(t)$$
(2.20)

Перепишем уравнения (2.15), (2.18) в виде

$$\ddot{\vec{r}}_{1} + G(m_{0} + m_{1})\frac{\vec{r}_{1}}{r_{1}^{3}} - \frac{\ddot{\gamma}_{1}}{\gamma_{1}}\vec{r}_{1} = grad_{\vec{r}_{1}}\tilde{W}_{1}$$
(2.21)

где возмущающие функции имеют вид

$$\tilde{W}_1 = W_1 + Q_1 + P_1 \tag{2.22}$$

$$W_{1} = \frac{\mu_{2}}{\left|\vec{r}_{2} - \vec{r}_{1}\right|} - \mu_{2} \frac{\vec{r}_{1} \cdot \vec{r}_{2}}{r_{2}^{3}}, \quad Q_{1} = F_{1x} x_{1} + F_{1y} y_{1} + F_{1z} z_{1}, \quad P_{1} = -\frac{\ddot{\gamma}_{1}}{2\gamma_{1}} \left(x_{1}^{2} + y_{1}^{2} + z_{1}^{2}\right), \quad (2.23)$$

$$\mu_1 = Gm_1, \quad r_{12} = |\vec{r}_1 - \vec{r}_2| = r_{12} \tag{2.24}$$

$$\ddot{\vec{r}}_{2} + G(m_{0} + m_{2})\frac{\vec{r}_{2}}{r_{2}^{3}} - \frac{\ddot{\gamma}_{2}}{\gamma_{2}}\vec{r}_{2} = grad_{\vec{r}_{2}}\tilde{W}_{2}, \qquad (2.25)$$

$$\tilde{W}_2 = W_2 + Q_2 + P_2 \tag{2.26}$$

$$W_{2} = \frac{\mu_{1}}{\left|\vec{r}_{1} - \vec{r}_{2}\right|} - \mu_{1} \frac{\vec{r}_{1} \cdot \vec{r}_{2}}{r_{1}^{3}}, \quad Q_{2} = F_{2x} x_{2} + F_{2y} y_{2} + F_{2z} z_{2}, \quad P_{2} = -\frac{\ddot{\gamma}_{2}}{2\gamma_{2}} \left(x_{2}^{2} + y_{2}^{2} + z_{2}^{2}\right), \quad (2.27)$$

$$\mu_2 = Gm_2, \quad r_{21} = |\vec{r}_1 - \vec{r}_2| = r_{12} \tag{2.28}$$

Полученные уравнения (2.21), (2.25) удобны для использования теории возмущений, поскольку при нулевых возмущающих функциях эти уравнения имеют точные решения, определяющие апериодическое движение по квазиконическому сечению [60, 58, с.149-150].

2.4 Невозмущенное движение

В случае, когда возмущающие функции равны нулю ($\tilde{W}_j = 0$, j = 1, 2) уравнения движения (2.21), (2.25) принимают вид:

$$\tilde{W}_{j} = 0, \ j = 1,2$$
 (2.29)

$$\ddot{\vec{r}}_1 + G(m_0 + m_1)\frac{\vec{r}_1}{r_1^3} - \frac{\ddot{\gamma}_1}{\gamma_1}\vec{r}_1 = 0$$
(2.30)

$$\ddot{\vec{r}}_2 + G(m_0 + m_2)\frac{\vec{r}_2}{r_2^3} - \frac{\ddot{\gamma}_2}{\gamma_2}\vec{r} = 0$$
(2.31)

Решения уравнений (2.30), (2.31) можно представить в виде

$$x_{j} = \gamma_{j} \rho_{j} \Big[\cos u_{j} \cdot \cos \Omega_{j} - \sin u_{j} \cdot \sin \Omega_{j} \cdot \cos i_{j} \Big],$$

$$y_{j} = \gamma_{j} \rho_{j} \Big[\cos u_{j} \cdot \sin \Omega_{j} + \sin u_{j} \cdot \cos \Omega_{j} \cdot \cos i_{j} \Big],$$

$$z_{j} = \gamma_{j} \rho_{j} \Big[\sin u_{j} \cdot \sin i_{j} \Big], \quad r_{j}^{2} = x_{j}^{2} + y_{j}^{2} + z_{j}^{2} = \gamma_{j}^{2} \rho_{j}^{2},$$

(2.32)

$$\dot{x}_{j} = \left(\frac{\dot{\gamma}_{j}}{\gamma_{j}} + \frac{\dot{\rho}_{j}}{\rho_{j}}\right) x_{j} + \gamma_{j}\rho_{j}\dot{u}_{j} \cdot \left[-\sin u_{j} \cdot \cos \Omega_{j} - \cos u_{j} \cdot \sin \Omega_{j} \cdot \cos i_{j}\right],$$

$$\dot{y}_{j} = \left(\frac{\dot{\gamma}_{j}}{\gamma_{j}} + \frac{\dot{\rho}_{j}}{\rho_{j}}\right) y_{j} + \gamma_{j}\rho_{j}\dot{u}_{j} \cdot \left[-\sin u_{j} \cdot \sin \Omega_{j} + \cos u_{j} \cdot \cos \Omega_{j} \cdot \cos i_{j}\right],$$

$$\dot{z}_{j} = \left(\frac{\dot{\gamma}_{j}}{\gamma_{j}} + \frac{\dot{\rho}_{j}}{\rho_{j}}\right) z_{j} + \gamma_{j}\rho_{j}\dot{u}_{j} \cdot \left[\cos u_{j} \cdot \sin i_{j}\right].$$

$$(2.33)$$

$$\rho_{j} = \frac{a_{j} \left(1 - e_{j}^{2}\right)}{1 + e_{j} \cos v_{j}}, \qquad j = 1, 2$$
(2.34)

где v_j - истинная аномалия, а параметры a_j , e_j , ω_j , Ω_j , i_j , определяемые из начальных условий движения, соответствуют известным из классической задачи двух тел кеплеровским орбитальным элементам и являются аналогами большой полуоси, эксцентриситета, наклонения, долготы перицентра и долготы перицентра и долготы восходящего узла невозмущенной квазиэллиптической орбиты каждого из тел P_1 и P_2 .

$$\dot{\rho}_{j} = \frac{1}{\gamma_{j}^{2}} \sqrt{\frac{G\left(m_{0}\left(t_{0}\right) + m_{j}\left(t_{0}\right)\right)}{p_{j}}} e_{j} \cdot \sin \nu_{j}$$

$$(2.35)$$

$$\dot{u}_{j} = \frac{1}{\gamma_{j}^{2}} \cdot \frac{\sqrt{G(m_{0}(t_{0}) + m_{j}(t_{j}))p_{j}}}{\rho_{j}^{2}}, u_{j} = v_{j} + \omega_{j}$$
(2.36)

$$\int_{0}^{\nu} \frac{d\nu}{\left(1 + e\cos\nu\right)^{2}} = \frac{\sqrt{Gm_{0}}}{p^{3/2}} \left[\phi(t) - \phi(\tau)\right],\tag{2.37}$$

где, как было отмечено выше, $\phi(t)$ - первообразная функции $[\gamma_j(t)]^{-2}$, τ_j - момент прохождения через перицентр.

В случае квазиэллиптического движения e < 1, переходя от истинной аномалии υ к эксцентрической аномалии E и применяя стандартное преобразование

$$tg\frac{\upsilon}{2} = \frac{\sqrt{1+e}}{\sqrt{1-e}}tg\frac{E}{2},\tag{2.38}$$

из уравнения (2.37) можно получить хорошо известное уравнение Кеплера

$$E - e\sin E = M. \tag{2.39}$$

Здесь $M = n[\phi(t) - \phi(\tau)]$ - средняя аномалия, а $n = \frac{\sqrt{Gm_0}}{a^{3/2}}$ - среднее

движение.

Формулы (2.32), (2.33) для координат и скоростей также могут быть выражены через эксцентрическую аномалию *E*.

В случае квазиэллиптического движения в силу уравнений Кеплера координаты, скорости и другие величины невозмущенного движения могут быть разложены, как и в кеплеровском движении, в различные ряды. Это обстоятельство даст возможность использовать хорошо разработанную теорию рядов эллиптического движения классической задачи двух тел постоянной массы [44, 60-62].

Для наших целей предпочтительно уравнения возмущенного движения в форме уравнении Лагранжа, которые описывают движение через оскулирующие элементы орбиты.

2.5 Уравнения возмущенного движения планет в форме Лагранжа

В теории возмущений на базе апериодического движения по квазиконическому сечению используются уравнения возмущенного движения в форме Лагранжа. Система оскулирующих элементов a_j , e_j , i_j , Ω_j , π_j , ε_j , где, $\pi_j = \omega_j + \Omega_j$, $a_j -$ большая полуось, $e_j -$ эксцентриситет, $i_j -$ наклонение, Ω_j - долгота восходящего узла, $\pi_j -$ долгота перицентра, $\varepsilon_j -$ средняя долгота в эпоху.

Соответственно, система дифференциальных уравнений оскулирующих элементов в форме уравнения Лагранжа имеет вид [24, с.263-264]

$$\frac{da_j}{dt} = \frac{2}{n_j a_j} \frac{\partial \tilde{W}_j}{\partial \varepsilon_j},$$
(2.40)

$$\frac{de_{j}}{dt} = \frac{\sqrt{1 - e_{j}^{2}}}{n_{j}a_{j}^{2}e_{j}}\frac{\partial \tilde{W}_{j}}{\partial \pi_{j}} - \frac{e_{j}\sqrt{1 - e_{j}^{2}}}{1 + \sqrt{1 - e_{j}^{2}}}\frac{1}{n_{j}a_{j}^{2}}\frac{\partial \tilde{W}_{j}}{\partial \varepsilon_{j}},$$
(2.41)

$$\frac{di_{j}}{dt} = -\frac{\operatorname{cosec} i_{j}}{n_{j}a_{j}^{2}\sqrt{1-e_{j}^{2}}}\frac{\partial W_{j}}{\partial \Omega_{j}} - \frac{\operatorname{tg}(i_{j}/2)}{n_{j}a_{j}^{2}\sqrt{1-e_{j}^{2}}}\left(\frac{\partial \tilde{W}_{j}}{\partial \pi_{j}} + \frac{\partial \tilde{W}_{j}}{\partial \varepsilon_{j}}\right),$$
(2.42)

$$\frac{d\Omega_j}{dt} = \frac{\operatorname{cosec} i_j}{n_j a_j^2 \sqrt{1 - e_j^2}} \frac{\partial \widetilde{W}_j}{\partial i_j},$$
(2.43)

$$\frac{d\pi_j}{dt} = \frac{\operatorname{tg}(i_j/2)}{n_j a_j^2 \sqrt{1 - e_j^2}} \frac{\partial \tilde{W}_j}{\partial i_j} + \frac{\sqrt{1 - e_j^2}}{n_j a_j^2 e_j} \frac{\partial \tilde{W}_j}{\partial e_j}, \qquad (2.44)$$

$$\frac{d\varepsilon_j}{dt} = -\frac{2}{n_j a_j} \frac{\partial \tilde{W}_j}{\partial a_j} + \frac{\operatorname{tg}(i_j/2)}{n_j a_j^2 \sqrt{1 - e_j^2}} \frac{\partial \tilde{W}_j}{\partial i_j} + \frac{e_j \sqrt{1 - e_j^2}}{1 + \sqrt{1 - e_j^2}} \frac{1}{n_j a_j^2} \frac{\partial \tilde{W}_j}{\partial e_j},$$
(2.45)

$$\tilde{W}_{j} = -\left(\frac{m_{j0}}{m_{j}\gamma_{j}}\right)^{\frac{1}{2}} W_{j}\left(t_{j}, a_{j}, e_{j}, \pi_{j}, i_{j}, \Omega_{j}, \varepsilon_{j}\right).$$
(2.46)

Иногда предпочтительна следующая система элементов:

$$a_j, e_j, i_j, \Omega_j, \pi_j, \lambda_j,$$
 (2.47)

где λ_j , - средняя долгота, которая вводится по формуле

$$\lambda_{j} = M_{j} + \pi_{j} = n_{j} \Big[\phi(t_{j}) - \phi(\tau_{j}) \Big] + \omega_{j} = n_{j} \phi(t_{j}) + \varepsilon_{j}$$
(2.48)

 M_{j} - средняя аномалия, ω_{j} - долгота перицентра, τ_{j} - время прохождения перицентра, то новый угол ε_{j} - обозначает среднюю долготу в эпоху (то есть среднюю долготу тела m_{j} в момент времени, принятый в качестве начального).

Для системы элементов (2.47) система дифференциальных уравнений возмущенного движения в форме уравнений Лагранжа имеет вид [59]:

$$\frac{da_j}{dt} = \frac{2}{n_j a_j} \frac{\partial \tilde{W_j}}{\partial \lambda_j},$$
(2.49)

$$\frac{de_{j}}{dt} = \frac{\sqrt{1 - e_{j}^{2}}}{n_{j}a_{j}^{2}e_{j}} \frac{\partial \tilde{W}_{j}}{\partial \pi_{j}} - \frac{e_{j}\sqrt{1 - e_{j}^{2}}}{1 + \sqrt{1 - e_{j}^{2}}} \frac{1}{n_{j}a_{j}^{2}} \frac{\partial \tilde{W}_{j}}{\partial \lambda_{j}},$$
(2.50)

$$\frac{di_{j}}{dt} = -\frac{\operatorname{cosec} i_{j}}{n_{j}a_{j}^{2}\sqrt{1-e_{j}^{2}}}\frac{\partial W_{j}}{\partial \Omega_{j}} - \frac{\operatorname{tg}(i_{j}/2)}{n_{j}a_{j}^{2}\sqrt{1-e_{j}^{2}}}\left(\frac{\partial \tilde{W}_{j}}{\partial \pi_{j}} + \frac{\partial \tilde{W}_{j}}{\partial \lambda_{j}}\right),$$
(2.51)

$$\frac{d\Omega_j}{dt} = \frac{\operatorname{cosec} i_j}{n_j a_j^2 \sqrt{1 - e_j^2}} \frac{\partial \tilde{W}_j}{\partial i_j}, \qquad (2.52)$$

$$\frac{d\pi_j}{dt} = \frac{\operatorname{tg}(i_j/2)}{n_j a_j^2 \sqrt{1 - e_j^2}} \frac{\partial \tilde{W}_j}{\partial i_j} + \frac{\sqrt{1 - e_j^2}}{n_j a_j^2 e_j} \frac{\partial \tilde{W}_j}{\partial e_j}, \qquad (2.53)$$

$$\frac{d\lambda_{j}}{dt} = \left(\frac{m_{0}(t) + m_{j}(t)}{m_{0}(t_{0}) + m_{j}(t_{0})}\right)^{2} \cdot n_{j} - \frac{2}{n_{j}a_{j}}\frac{\partial\tilde{W}_{j}}{\partial a_{j}} + \frac{\mathrm{tg}(i_{j}/2)}{n_{j}a_{j}^{2}\sqrt{1 - e_{j}^{2}}}\frac{\partial\tilde{W}_{j}}{\partial i_{j}} + \frac{e_{j}\sqrt{1 - e_{j}^{2}}}{1 + \sqrt{1 - e_{j}^{2}}}\frac{1}{n_{j}a_{j}^{2}}\frac{\partial\tilde{W}_{j}}{\partial e_{j}}, \qquad (2.54)$$

$$\tilde{W}_{j} = -\left(\frac{m_{j0}}{m_{j}\gamma_{j}}\right)^{\frac{1}{2}} W_{j}\left(t_{j}, a_{j}, e_{j}, \pi_{j}, i_{j}, \Omega_{j}, \lambda_{j}\right).$$
(2.55)

Для получения явного вида правой части уравнений (2.49) - (2.54) в оскулирующих элементах необходимо выразить возмущающие функции (2.55) через оскулирующие элементы (2.47).

Рисунок 2.3 - Аналоги оскулирующих элементов Кеплера – оскулирующие элементы апериодического движения по квазиконическому сечению

На Рисунке 2.3 описаны оскулирующие элементы Кеплера, где θ истинная аномалия, N – линия узлов, Π – перицентр, ω – аргумент перицентра, i – наклонение, Ω - долгота восходящего узла, a – большая полуось, b – малая полуось, π – долгота перицентра, e – эксцентриситет [43, с.36-40].

2.6 Реактивные силы при анизотропном изменении массы

Реактивные силы в уравнениях движения (2.3)-(2.5) зависят от скорости изменения масс тел dm_j/dt и относительной скорости \vec{V}_j вылетающих из тел или осаждающихся на телах частиц [56, с.222-233]. Если обозначить массу тела в момент времени t_0 через $m_{j0} = m_j(t_0)$, j = 0,1,2, массу отделяющихся от тела частиц в момент времени t через $m_{j1} = m_{j1}(t)$, а массу присоединяющихся к телу частиц через $m_{j2} = m_{j2}(t)$, то можно записать

$$m_{j}(t) = m_{j0} - m_{j1}(t) + m_{j2}(t)$$
(2.56)

где $m_{j1}(t), m_{j2}(t)$ – неубывающие неотрицательные функции времени, а функция $m_j(t)$ непрерывна и дифференцируема. При исследовании конкретных систем

функции $m_{j1}(t), m_{j2}(t)$ определяют на основе наблюдений или выбирают некоторые реалистичные модельные функции.

В абсолютной системе координат скорости отделяющихся частиц можно записать в виде

$$\vec{V}_{01} = \vec{u}_{01} - \dot{\vec{R}}_0, \qquad \vec{V}_{11} = \vec{u}_{11} - \dot{\vec{R}}_1, \qquad \vec{V}_{21} = \vec{u}_{21} - \dot{\vec{R}}_2$$
(2.58)

В уравнениях (2.58), \vec{u}_{01} , \vec{u}_{11} , \vec{u}_{21} - относительные скорости отделяющихся частиц. Соответственно \vec{u}_{02} , \vec{u}_{12} , \vec{u}_{22} - относительные скорости присоединяющихся (налипающих) частиц и:

$$\vec{V}_{02} = \vec{u}_{02} - \dot{\vec{R}}_0, \qquad \vec{V}_{12} = \vec{u}_{12} - \dot{\vec{R}}_1, \qquad \vec{V}_{22} = \vec{u}_{22} - \dot{\vec{R}}_1 \qquad (2.59)$$

Тогда реактивные силы имеют вид

$$\vec{F}_1 = \vec{F}_1(t) = \vec{\Pi}_{11} + \vec{\Pi}_{12}.$$
(2.60)

$$\vec{F}_2 = \vec{F}_2(t) = \vec{\Pi}_{21} + \vec{\Pi}_{22}.$$
(2.61)

Здесь обозначены реактивные силы, обусловленные отделяющимися частицами,

$$\vec{\Pi}_{11} = \frac{1}{m_1} \left(\dot{m}_{11} \vec{V}_{11} \right) - \frac{1}{m_0} \left(\dot{m}_{01} \vec{V}_{01} \right), \ \vec{\Pi}_{21} = \frac{1}{m_2} \left(\dot{m}_{21} \vec{V}_{21} \right) - \frac{1}{m_0} \left(\dot{m}_{01} \vec{V}_{01} \right).$$
(2.62)

Аналогично, реактивные силы, обусловленные присоединяющимися (налипающими) частицами, выражаются формулами

$$\vec{\Pi}_{12} = \frac{1}{m_1} \left(\dot{m}_{12} \vec{V}_{12} \right) - \frac{1}{m_0} \left(\dot{m}_{02} \vec{V}_{02} \right), \ \vec{\Pi}_{22} = \frac{1}{m_2} \left(\dot{m}_{22} \vec{V}_{22} \right) - \frac{1}{m_0} \left(\dot{m}_{02} \vec{V}_{02} \right)$$
(2.63)

Для решения уравнений движения нужно знать законы изменения масс тел и относительные скорости вылетающих и прилипающих частиц как функции времени. Поэтому мы рассмотрим модельный случай и будем предполагать, что скорости вылетания частиц из тел постоянные, но их направления изменяются. Для звезды будем считать, что заданы три проекции скорости на оси x_j , y_j , z_j , которые мы обозначили V_{0x} , V_{0y} , V_{0z} . Для планет скорости вылетающих частиц разлагаем на три составляющие – вдоль радиусвектора г, вдоль нормали к плоскости орбиты и вдоль касательной к траектории. Поскольку в выражение для силовой функции входит скалярное произведение скорости и радиус-вектора, в окончательную формулу входит только V_{1r} и V_{2r} .

$$\begin{split} \vec{V}_{1}\vec{r}_{1} &= V_{1r}r_{1} = V_{1r}\gamma_{1}\rho_{1} = V_{1r}\gamma_{1} \times \\ &\times \Big(\Big\{ \rho_{1}^{2}\cos^{2}\theta_{1} \Big\}\cos^{2}\omega_{1} - \Big\{ \rho_{1}^{2}\sin^{2}\theta_{1} \Big\}\sin^{2}\omega_{1} \Big)\cos^{2}\Omega_{1} - \Big(\Big\{ \rho_{1}^{2}\sin^{2}\theta_{1} \Big\}\cos^{2}\omega_{1} + \Big\{ \rho_{1}^{2}\cos^{2}\theta_{1} \Big\}\sin^{2}\omega_{1} \Big)\sin^{2}\Omega_{1}\cos^{2}i_{1} + \\ &+ \Big(\Big\{ \rho_{1}^{2}\cos^{2}\theta_{1} \Big\}\cos^{2}\omega_{1} - \Big\{ \rho_{1}^{2}\sin^{2}\theta_{1} \Big\}\sin^{2}\omega_{1} \Big)\sin^{2}\Omega_{1} + \Big(\Big\{ \rho_{1}^{2}\sin^{2}\theta_{1} \Big\}\cos^{2}\omega_{1} + \Big\{ \rho_{1}^{2}\cos^{2}\theta_{1} \Big\}\sin^{2}\omega_{1} \Big)\cos^{2}\Omega_{1}\cos^{2}i_{1} + \\ &+ \Big(\Big\{ \rho_{1}^{2}\sin^{2}\theta_{1} \Big\}\cos^{2}\omega_{1} + \Big\{ \rho_{1}^{2}\cos^{2}\theta_{1} \Big\}\sin^{2}\omega_{1} \Big)\sin^{2}i_{1} \Big)^{1/2} \end{split}$$

$$\vec{V}_{0}\vec{r}_{1} = V_{0x}r_{1x} + V_{0y}r_{1y} + V_{0z}r_{1z} = V_{0x}\gamma_{1} \times \\ \times (\{\rho_{1}\cos\theta_{1}\}\cos\omega_{1} - \{\rho_{1}\sin\theta_{1}\}\sin\omega_{1})\cos\Omega_{1} - (\{\rho_{1}\sin\theta_{1}\}\cos\omega_{1} + \{\rho_{1}\cos\theta_{1}\}\sin\omega_{1})\sin\Omega_{1}\cos i_{1} + \\ + V_{0y}\gamma_{1}((\{\rho_{1}\cos\theta_{1}\}\cos\omega_{1} - \{\rho_{1}\sin\theta_{1}\}\sin\omega_{1})\sin\Omega_{1} + (\{\rho_{1}\sin\theta_{1}\}\cos\omega_{1} + \{\rho_{1}\cos\theta_{1}\}\sin\omega_{1})\cos\Omega_{1}\cos i_{1} + \\ + V_{0z}\gamma_{1}((\{\rho_{1}\sin\theta_{1}\}\cos\omega_{1} + \{\rho_{1}\cos\theta_{1}\}\sin\omega_{1})\sin i_{1})$$

$$\begin{split} \vec{V}_{2}\vec{r}_{2} &= V_{2r}r_{2} = V_{2r}\gamma_{2}\rho_{2} = V_{2r}\gamma_{2} \times \\ &\times \Big(\Big\{ \left\{ \rho_{2}^{2}\cos^{2}\theta_{2} \right\}\cos^{2}\omega_{2} - \Big\{ \rho_{2}^{2}\sin^{2}\theta_{2} \Big\}\sin^{2}\omega_{2} \Big)\cos^{2}\Omega_{2} - \Big(\Big\{ \rho_{2}^{2}\sin^{2}\theta_{2} \Big\}\cos^{2}\omega_{2} + \Big\{ \rho_{2}^{2}\cos^{2}\theta_{2} \Big\}\sin^{2}\omega_{2} \Big)\sin^{2}\Omega_{2}\cos^{2}i_{2} + \\ &+ \Big(\Big\{ \rho_{2}^{2}\cos^{2}\theta_{2} \Big\}\cos^{2}\omega_{2} - \Big\{ \rho_{2}^{2}\sin^{2}\theta_{2} \Big\}\sin^{2}\omega_{2} \Big)\sin^{2}\Omega_{2} + \Big(\Big\{ \rho_{2}^{2}\sin^{2}\theta_{2} \Big\}\cos^{2}\omega_{2} + \Big\{ \rho_{2}^{2}\cos^{2}\theta_{2} \Big\}\sin^{2}\omega_{2} \Big)\cos^{2}\Omega_{2}\cos^{2}i_{2} + \\ &+ \Big(\Big\{ \rho_{2}^{2}\sin^{2}\theta_{2} \Big\}\cos^{2}\omega_{2} + \Big\{ \rho_{2}^{2}\cos^{2}\theta_{2} \Big\}\sin^{2}\omega_{2} \Big)\sin^{2}i_{2} \Big)^{1/2} \end{split}$$

$$\vec{V}_{0}\vec{r}_{2} = V_{0x}r_{2x} + V_{0y}r_{2y} + V_{0z}r_{2z} = V_{0x}\gamma_{2} \times \times \left\{ \left\{ \rho_{2}\cos\theta_{2} \right\}\cos\omega_{2} - \left\{ \rho_{2}\sin\theta_{2} \right\}\sin\omega_{2} \right)\cos\Omega_{2} - \left\{ \left\{ \rho_{2}\sin\theta_{2} \right\}\cos\omega_{2} + \left\{ \rho_{2}\cos\theta_{2} \right\}\sin\omega_{2} \right)\sin\Omega_{2}\cos\omega_{2} + \left\{ +V_{0y}\gamma_{2} \left(\left\{ \left\{ \rho_{2}\cos\theta_{2} \right\}\cos\omega_{2} - \left\{ \rho_{2}\sin\theta_{2} \right\}\sin\omega_{2} \right)\sin\Omega_{2} + \left\{ \left\{ \rho_{2}\sin\theta_{2} \right\}\cos\omega_{2} + \left\{ \rho_{2}\cos\theta_{2} \right\}\sin\omega_{2} \right)\cos\Omega_{2}\cos\omega_{2} + \left\{ \rho_{2}\cos\theta_{2} \right\}\sin\omega_{2} \right)\cos\Omega_{2}\cos\omega_{2} + \left\{ +V_{0z}\gamma_{2} \left(\left\{ \left\{ \rho_{2}\sin\theta_{2} \right\}\cos\omega_{2} + \left\{ \rho_{2}\cos\theta_{2} \right\}\sin\omega_{2} \right)\sin\omega_{2} \right)\sin\omega_{2} \right\}\sin\omega_{2} \right\}\sin\omega_{2} \right\}\sin\omega_{2} \right\}\sin\omega_{2} \right\}\sin\omega_{2} \right\}\sin\omega_{2} \right\}\sin\omega_{2} \right\}$$

Будем считать, что массы тел изменяются в соответствии с известным законом Эдингтона - Джинса

$$\dot{m}_j = -\alpha m_j^n,$$
(2.65)
 $\alpha = const,$
 $n = const, \ 0.4 \le n \le 4.4$

Параметры α и *n* выберем на основе на основе данных для системы GJ 180 - GJ 180 b- GJ 180 c.

2.7 Основные результаты, полученные в разделе 2

Исходя из уравнений Мещерского, получены уравнения движения при наличии реактивных сил в абсолютной (барицентрической) прямоугольной декартовой системе координат.

Получены уравнения движения рассматриваемой задачи в относительной системе координат с началом в центре родительской звезды, более удобные для использования теории возмущении на базе апериодического движения по квазиконическому сечению.

Получены уравнения возмущенного движения планет в форме уравнений Лагранжа.

Получены выражения для реактивных сил при анизотропном изменении массы в относительной системе координат.

3 ВЫЧИСЛЕНИЕ ВОЗМУЩАЮЩЕЙ ФУНКЦИИ В АНАЛОГАХ ВТОРОЙ СИСТЕМЫ ПУАНКАРЕ

Проблема трех тел является неинтегрируемой даже при постоянных массах и для ее исследования обычно применяют теорию возмущений, используя в качестве нулевого приближения точное решение задачи двух тел. Такой подход оказался весьма успешным, например, при исследовании движения планеты или спутника в системе звезда–планета или двойная звезда [23, с.404. 63-66].

Поскольку массы небесных тел с течением времени изменяются, представляет интерес исследовать влияние таких изменений на орбитальные параметры в рамках задачи трех тел. Специальный случай этой задачи, когда массы двух тел изменяются изотропно одинаковым образом, рассмотрен в работах [67-69].

3.1 Уравнения движения в оскулирующих элементах Пуанкаре

Предполагая, что наиболее массивное тело P_0 находится в начале координат, и используя относительные декартовые координаты $\vec{R}_i = (X_i, Y_i, Z_i)$, уравнения движения тел P_1 , P_2 можно записать в виде [58, с.148, 69]:

$$m_{j}\frac{d^{2}\vec{R}_{j}}{dt^{2}} = grad_{\vec{R}_{j}}U + \dot{m}_{j}\vec{V}_{j}, \quad j = 0, 1, 2,$$
(3.1)

где относительные скорости \vec{V}_j , (j=0,1,2) частиц, покидающих тело P_j , или осаждающихся на нем, являются заданными функциями времени. Силовая функция ньютоновского взаимодействия:

$$U = G\left(\frac{m_0 m_1}{R_{01}} + \frac{m_0 m_2}{R_{02}} + \frac{m_1 m_2}{R_{12}}\right), \quad R_{ij} = \sqrt{\left(X_i - X_j\right)^2 + \left(Y_i - Y_j\right)^2 + \left(Z_i - Z_j\right)^2}, \quad (3.2)$$

где G - гравитационная постоянная.

Используем относительную систему координат, где в центре находится родительская звезда P_0 , $\vec{r}_i \rightarrow \vec{R}_i - \vec{R}_0$, j = 1, 2.

$$\frac{d^{2}\vec{r}_{j}}{dt^{2}} + G\left(m_{0} + m_{j}\right)\frac{\vec{r}_{j}}{r_{j}^{3}} = grad_{\vec{r}_{j}}W + \frac{\dot{m}_{j}}{m_{j}}\vec{V}_{j} - \frac{\dot{m}_{0}}{m_{0}}\vec{V}_{0}, \quad W = G\sum_{j=l(\neq i)}^{2}m_{j}\left(\frac{1}{\Delta_{ij}} - \frac{\vec{r}_{i}\vec{r}_{j}}{r_{j}^{3}}\right) \quad (3.3)$$
$$\Delta_{ij} = \sqrt{\left(x_{i} - x_{j}\right)^{2} + \left(y_{i} - y_{j}\right)^{2} + \left(z_{i} - z_{j}\right)^{2}} = r_{ij}, \quad r_{j} = \sqrt{x_{i}^{2} + y_{i}^{2} + z_{i}^{2}}, \quad i = 1, 2.$$

Введем параметры:
$$\gamma_{1} = \gamma_{1}(t) = \frac{m_{0}(t_{0}) + m_{1}(t_{0})}{m_{0}(t) + m_{1}(t)}, \quad \gamma_{2} = \gamma_{2}(t) = \frac{m_{0}(t_{0}) + m_{2}(t_{0})}{m_{0}(t) + m_{2}(t)}$$

Перепишем уравнение движения (3.3) в виде, удобном для применения теории возмущений:

$$\frac{d^{2}\vec{r}_{1}}{dt^{2}} = grad_{\vec{r}_{1}}\left(G\frac{m_{0}+m_{1}}{r_{1}}\right) + b_{1}\vec{r}_{1} + grad_{\vec{r}_{1}}W_{1},
\frac{d^{2}\vec{r}_{2}}{dt^{2}} = grad_{\vec{r}_{2}}\left(G\frac{m_{0}+m_{2}}{r_{2}}\right) + b_{2}\vec{r}_{2} + grad_{\vec{r}_{2}}W_{2},$$
(3.4)

где

$$\tilde{W}_{1} = -\frac{1}{2}b_{1}r_{1}^{2} + U_{1} + \vec{Q}_{1}\vec{r}_{1}, \qquad r_{1}^{2} = x_{1}^{2} + y_{1}^{2} + z_{1}^{2},$$

$$\tilde{W}_{2} = -\frac{1}{2}b_{2}r_{2}^{2} + U_{2} + \vec{Q}_{2}\vec{r}_{2}, \qquad r_{2}^{2} = x_{2}^{2} + y_{2}^{2} + z_{2}^{2},$$
(3.5)

$$U_{1} = Gm_{2} \left(\frac{1}{\left| \vec{r}_{2} - \vec{r}_{1} \right|} - \frac{\vec{r}_{1}\vec{r}_{2}}{r_{2}^{3}} \right), \qquad U_{2} = Gm_{1} \left(\frac{1}{\left| \vec{r}_{2} - \vec{r}_{1} \right|} - \frac{\vec{r}_{1}\vec{r}_{2}}{r_{1}^{3}} \right), \tag{3.6}$$

$$b_1 = b_1(t) = \frac{1}{\gamma_1} \frac{d^2 \gamma_1}{dt^2}, \qquad b_2 = b_2(t) = \frac{1}{\gamma_2} \frac{d^2 \gamma_2}{dt^2}. \tag{3.7}$$

Реактивные силы является заданными функциями времени

$$\vec{Q}_{1} = \frac{\dot{m}_{1}}{m_{1}}\vec{V}_{1} - \frac{\dot{m}_{0}}{m_{0}}\vec{V}_{0} = \vec{Q}_{1}(t), \qquad \qquad \vec{Q}_{2} = \frac{\dot{m}_{2}}{m_{2}}\vec{V}_{2} - \frac{\dot{m}_{0}}{m_{0}}\vec{V}_{0} = \vec{Q}_{2}(t).$$
(3.8)

В случае $W_1 = W_2 = 0$ имеем две независимые системы дифференциальных уравнений, описывающих движение тел P_1 и P_2 вокруг тела P_0 по квазиконическим сечениям [69, с.58]. Рассмотрим уравнения движения в задаче двух тел с переменными массами.

$$\frac{d^{2}x}{dt} = \frac{x(t)\ddot{\gamma}(t)}{\gamma(t)} - \frac{Kx(t)}{\gamma(t)\left(x(t)^{2} + y(t)^{2} + z(t)^{2}\right)^{3/2}},$$

$$\frac{d^{2}y}{dt} = \frac{y(t)\ddot{\gamma}(t)}{\gamma(t)} - \frac{Ky(t)}{\gamma(t)\left(x(t)^{2} + y(t)^{2} + z(t)^{2}\right)^{3/2}},$$

$$\frac{d^{2}z}{dt} = \frac{z(t)\ddot{\gamma}(t)}{\gamma(t)} - \frac{Kz(t)}{\gamma(t)\left(x(t)^{2} + y(t)^{2} + z(t)^{2}\right)^{3/2}}.$$
(3.9)

Где $K = G(m_{00} + m_{10})$ ИЛИ $K = G(m_{00} + m_{20})$, $\gamma(t) = \gamma_1(t)$, $\gamma(t) = \gamma_2(t)$.

Чтобы записать уравнения движения в форме Лагранжа, определим кинетическую и потенциальную энергию системы

$$K_{0} = \gamma(t)\rho(t)\gamma'(t)\rho'(t) + \frac{1}{2}\rho(t)^{2}\gamma'(t)^{2} + \frac{1}{2}\gamma(t)^{2}\rho(t)^{2}\theta'(t)^{2}\cos^{2}(\varphi(t)) + \frac{1}{2}\gamma(t)^{2}\rho'(t)^{2} + \frac{1}{2}\gamma(t)^{2}\rho(t)^{2}\varphi'(t)^{2},$$
(3.10)

$$U_{0} = \frac{1}{2}\gamma(t)\rho(t)^{2}\ddot{\gamma}(t) + \frac{K}{\gamma(t)^{2}\rho(t)}.$$
(3.11)

Уравнение движение перепишем в квазисферических координатах:

$$\rho''(t) = -\frac{2\gamma'(t)\rho'(t)}{\gamma(t)} - \frac{K}{\gamma(t)^4 \rho(t)^2} + \rho(t) (\theta'(t)^2 \cos^2(\varphi(t)) + \varphi'(t)^2),$$

$$\varphi''(t) = \theta'(t)^2 \sin(\varphi(t)) (-\cos(\varphi(t))) - \frac{2\varphi'(t) (\rho(t)\gamma'(t) + \gamma(t)\rho'(t))}{\gamma(t)\rho(t)},$$
(3.12)

$$\theta''(t) = -\frac{2\theta'(t) (\rho(t) (\gamma'(t) - \gamma(t)\varphi'(t) \tan(\varphi(t))) + \gamma(t)\rho'(t))}{\gamma(t)\rho(t)}.$$

Для записи этих уравнений движения в гамильтоновой форме, определим канонические импульсы в виде

$$P\rho(t) = \gamma(t)\rho(t)\gamma'(t) + \gamma(t)^{2}\rho'(t),$$

$$P\phi(t) = \gamma(t)^{2}\rho(t)^{2}\phi'(t),$$

$$P\theta(t) = \gamma(t)^{2}\rho(t)^{2}\theta'(t)\cos^{2}(\phi(t)).$$

(3.13)

$$\rho'(t) = \frac{P\rho(t) - \gamma(t)\rho(t)\gamma'(t)}{\gamma(t)^2}, \quad \varphi'(t) = \frac{P\varphi(t)}{\gamma(t)^2\rho(t)^2}, \quad \varphi'(t) = \frac{P\varphi(t)}{\gamma(t)^2\rho(t)^2}.$$
(3.14)

$$H_{0} = \frac{P\theta(t)^{2} \sec^{2}(\varphi(t))}{2\gamma(t)^{2} \rho(t)^{2}} - \frac{P\rho(t)\rho(t)\gamma'(t)}{\gamma(t)} + \frac{P\rho(t)^{2}}{2\gamma(t)^{2}} + \frac{P\varphi(t)^{2}}{2\gamma(t)^{2} \rho(t)^{2}} - \frac{1}{2}\gamma(t)\rho(t)^{2}\gamma''(t) - \frac{K}{\gamma(t)^{2} \rho(t)}$$
(3.15)

Уравнения движения (3.9) имеют точное решение, которое описывает движение тела на коническом сечении:

$$\rho_{j} = \frac{a_{j} \left(1 - e_{j}^{2}\right)}{1 + e_{j} \cos \nu_{j}} = a_{j} \left(1 - e_{j} \cos E_{j}\right), \qquad (3.16)$$

$$E_{j} - e_{j} \sin w_{j} = M_{j} = \frac{\sqrt{G(m_{0} + m_{j})}}{a_{j}^{3/2}} (\Phi_{j}(t) - \Phi_{j}(\tau)), \qquad \Phi_{j}(t) = \int_{0}^{t} \frac{dt}{\gamma_{j}^{2}(t)}.$$
(3.17)

где v_i - истинная аномалия, E_i - эксцентрическая аномалия, M = l - средняя аномалия, τ_i - время прохождения в перицентре [44,c.32, 59,c.387, 70].

$$\tan\left(\frac{\nu_{j}}{2}\right) = \sqrt{\frac{e_{j}+1}{1-e_{j}}} \tan\left(\frac{E_{j}}{2}\right), \quad \sin\left(\nu_{j}\right) = \frac{\left(e_{j}-1\right)\sqrt{\frac{e_{j}+1}{1-e_{j}}}\sin E_{j}}{e_{j}\cos E_{j}-1}, \quad \cos\left(\nu_{j}\right) = \frac{e_{j}-\cos E_{j}}{e_{j}\cos E_{j}-1}.$$
 (3.18)

3.2 Разложения возмущающей функции в оскулирующих элементах Пуанкаре

Траектория каждого тела может быть определена шестью параметрами, которые известны как орбитальные элементы, а именно аналоги: $e_j, i_j, a_j, \omega_j, \Omega_j, M_j$. Декартовые координаты тел определяются:

$$\begin{aligned} x_{j} &= \gamma_{j}(t)\rho_{j}(t)\left(\cos\left(v_{j}+\omega_{j}\right)\cos\Omega_{j}-\sin\left(v_{j}+\omega_{j}\right)\sin\Omega_{j}\cos i_{j}\right) = \\ &= \gamma_{j}(t)a_{j}\left(\left(\cos w_{j}-e_{j}\right)\left(\cos \omega_{j}\cos\Omega_{j}-\sin \omega_{j}\sin\Omega_{j}\cos i_{j}\right)-\sqrt{1-e_{j}^{2}}\left(\sin \omega_{j}\cos\Omega_{j}\sin w_{j}+\cos \omega_{j}\sin\Omega_{j}\sin w_{j}\cos i_{j}\right)\right), \\ y_{j} &= \gamma_{j}(t)\rho_{j}(t)\left(\cos\left(v_{j}+\omega_{j}\right)\sin\Omega_{j}+\sin\left(v_{j}+\omega_{j}\right)\cos\Omega_{j}\cos i_{j}\right) = \\ &= \gamma_{j}(t)a_{j}\left(\left(\cos w_{j}-e_{j}\right)\left(\cos \omega_{j}\sin\Omega_{j}+\sin \omega_{j}\cos\Omega_{j}\cos i_{j}\right)-\sqrt{1-e_{j}^{2}}\left(\sin \omega_{j}\sin \Omega_{j}\sin w_{j}-\cos \omega_{j}\cos\Omega_{j}\sin w_{j}\cos i_{j}\right)\right), \\ z_{j} &= \gamma_{j}(t)\rho_{j}(t)\sin\left(v_{j}+\omega_{j}\right)\sin i_{j} = \gamma_{j}(t)a_{j}\left(\left(\cos w_{j}-e_{j}\right)\sin \omega_{j}\sin i_{j}+\sqrt{1-e_{j}^{2}}\cos \omega_{j}\sin w_{j}\sin i_{j}\right)\right). \end{aligned}$$

Здесь нужно привести уравнение Кеплера, которое связывает эксцентрическую аномалию w=E и среднюю аномалию M=l

$$\omega_j - e_j \sin \omega_j = M_j, \qquad j = 1, 2. \tag{3.20}$$

Уравнение (3.20) точно не решается и поэтому мы получаем его решение в виде ряда по эксцентриситету.

Соответствующие решения в виде степенных рядов по эксцентриситету:

$$\cos E_{j} = -\frac{3}{2}e_{j}^{2}\sin^{2}(l_{j})\cos(l_{j}) - e_{j}\sin^{2}(l_{j}) + \cos(l_{j}),$$

$$\sin E_{j} = \frac{1}{8}e_{j}^{2}(3\sin(3l_{j}) - \sin(l_{j})) + e_{j}\sin(l_{j})\cos(l_{j}) + \sin(l_{j}).$$
(3.21)

Уравнения возмущенного движения очень сложные, и их общее решение не может быть найдено в символьной форме. Поэтому мы предположим, что траектории обоих тел почти плоские и их наклонения к плоскости *Оху* малы $i_j \ll 1$. Кроме того, предположим, что эксцентриситеты траекторий также малы $e_j \ll 1$. Известна система канонических переменных, для которой некоторые канонические переменные малы для $i_j \ll 1$ и $e_j \ll 1$ - это вторая система Пуанкаре [71].

Три пары канонически сопряженных координат и моментов $(\lambda_j, \Lambda_j), (\eta_j, \xi_j), (q_j, p_j)$ связаны с элементами Делоне с помощью отношений:

$$\lambda_{j} = l_{j} + g_{j} + h_{j} = l_{j} + \omega_{j} + \Omega_{j}, \Lambda_{j} = L_{j},$$

$$\xi_{j} = \sqrt{2\Gamma_{j}} \cos\delta_{j}, \eta_{j} = \sqrt{2\Gamma_{j}} \sin\delta_{j},$$

$$p_{j} = \sqrt{2Z_{j}} \cos z_{j}, q_{j} = \sqrt{2Z_{j}} \sin z_{j},$$

(3.22)

где

$$\Gamma_j = \Lambda_j \left(1 - \sqrt{1 - e_j^2} \right), \quad Z_j = \Lambda_j \sqrt{1 - e_j^2} \left(1 - \cos i_j \right), \quad \delta_j = -\omega_j - \Omega_j, \quad z_j = -\Omega_j.$$

Для e_j^2 получим точное выражение через $\xi_j^2 + \eta_j^2$:

$$e_{j}^{2} = \frac{\eta_{j}^{2} + \xi_{j}^{2}}{\Lambda_{j}} - \frac{\left(\eta_{j}^{2} + \xi_{j}^{2}\right)^{2}}{4\Lambda_{j}^{2}}, \quad e_{j}\cos\delta_{j} = \frac{\xi_{j}}{\sqrt{\Lambda_{j}}} + \frac{-\eta_{j}^{2}\xi_{j} - \xi_{j}^{3}}{8\Lambda_{j}^{3/2}}, \quad e_{j}\sin\delta_{j} = \frac{\eta_{j}}{\sqrt{\Lambda_{j}}} + \frac{-\eta_{j}^{3} - \eta_{j}\xi_{j}^{2}}{8\Lambda_{j}^{3/2}}.$$
 (3.23)

и далее разложим $e_j \cos \delta_j$, $e_j \sin \delta_j$ по малым величинам ξ_j , η_j с точностью до второго порядка.

Аналогичным образом получаем для малого $i_j \ll 1$.

$$p_{j} = \sqrt{2\Lambda_{j}\sqrt{1 - e_{j}^{2}}(1 - \cos i_{j})}\cos z_{j}, \quad q_{j} = \sqrt{2\Lambda_{j}\sqrt{1 - e_{j}^{2}}(1 - \cos i_{j})}\sin z_{j},$$

$$p_{j}^{2} + q_{j}^{2} = 2\Lambda_{j}\sqrt{1 - e_{j}^{2}}(1 - \cos i_{j}) = 2\Lambda_{j}\sqrt{1 - e_{j}^{2}}(1 - \sqrt{1 - \sin i_{j}^{2}}),$$

$$\cos i_{j} = 1 - \frac{p_{j}^{2} + q_{j}^{2}}{2\Lambda_{j}\sqrt{1 - e_{j}^{2}}}, \quad \sin i_{j}^{2} = \frac{p_{j}^{2} + q_{j}^{2}}{\Lambda_{j}\sqrt{1 - e_{j}^{2}}} - \frac{\left(p_{j}^{2} + q_{j}^{2}\right)^{4}}{4\Lambda_{j}^{2}(1 - e_{j}^{2})} = \frac{p_{j}^{2} + q_{j}^{2}}{\Lambda_{j}\sqrt{1 - e_{j}^{2}}} \left(1 - \frac{p_{j}^{2} + q_{j}^{2}}{4\Lambda_{j}\sqrt{1 - e_{j}^{2}}}\right),$$

$$p_{j}^{2} = \left(p_{j}^{2} + q_{j}^{2}\right)\cos z_{j}^{2},$$

$$(3.24)$$

Из определения p_j получаем уравнения:

$$p_{j} = \frac{1}{128} \sin i_{j} \cos z_{j} \left(128 + \frac{7\left(p_{j}^{2} + q_{j}^{2}\right)^{2}}{\left(1 - e_{j}^{2}\right)\Lambda_{j}^{2}} + \frac{16\left(p_{j}^{2} + q_{j}^{2}\right)}{\sqrt{1 - e_{j}^{2}}\Lambda_{j}} \right) \sqrt{\sqrt{1 - e_{j}^{2}}\Lambda_{j}},$$

$$\sin i_{j} \cos z_{j} = \frac{128p_{j}}{\left(128 + \frac{7\left(p_{j}^{2} + q_{j}^{2}\right)^{2}}{\left(1 - e_{j}^{2}\right)\Lambda_{j}^{2}} + \frac{16\left(p_{j}^{2} + q_{j}^{2}\right)}{\sqrt{1 - e_{j}^{2}}\Lambda_{j}} \right) \sqrt{\sqrt{1 - e_{j}^{2}}\Lambda_{j}},$$

$$\frac{p_{j}}{\sqrt{\Lambda_{j}}} - \frac{p_{j}\left(p_{j}^{2} + q_{j}^{2} - 2\left(\eta_{j}^{2} + \xi_{j}^{2}\right)\right)}{8\Lambda_{j}^{3/2}},$$

$$q_{j} = \frac{1}{128} \sin i_{j} \sin z_{j} \left(128 + \frac{7\left(p_{j}^{2} + q_{j}^{2}\right)^{2}}{\left(1 - e_{j}^{2}\right)\Lambda_{j}^{2}} + \frac{16\left(p_{j}^{2} + q_{j}^{2}\right)}{\sqrt{1 - e_{j}^{2}}\Lambda_{j}} \right) \sqrt{\sqrt{1 - e_{j}^{2}}\Lambda_{j}},$$

$$\sin i_{j} \sin z_{j} = \frac{q_{j}}{\sqrt{\Lambda_{j}}} - \frac{q_{j}\left(p_{j}^{2} + q_{j}^{2} - 2\left(\eta_{j}^{2} + \xi_{j}^{2}\right)\right)}{8\Lambda_{j}^{3/2}}$$

Эти результаты точны до второго порядка по малым параметрам. Используем их в следующих выражениях:

$$e_{j}\cos\delta_{j} = \frac{\xi_{j}}{\sqrt{\Lambda_{j}}}, \quad e_{j}\sin\delta_{j} = \frac{\eta_{j}}{\sqrt{\Lambda_{j}}}, \quad \cos i_{j} = 1 - \frac{p_{j}^{2} + q_{j}^{2}}{2\Lambda_{j}},$$

$$\cos z_{j}\sin i_{j} = \frac{p_{j}}{\sqrt{\Lambda_{j}}}, \quad \sin i_{j}\sin z_{j} = \frac{q_{j}}{\sqrt{\Lambda_{j}}},$$

$$e_{j}^{2}\cos_{j}^{2}\delta_{j} = \frac{\xi_{j}^{2}}{\Lambda_{j}}, \quad e_{j}^{2}\sin^{2}\delta_{j} = \frac{\eta_{j}^{2}}{\Lambda_{j}}, \quad e_{j}^{2}\cos\delta_{j}\sin\delta_{j} = \frac{\eta_{j}\xi_{j}}{\Lambda_{j}}.$$
(3.26)

Перепишем гамильтониан в новых переменных. Расстояния r₁ и r₂ можно найти в виде:

$$\frac{\rho_{j}^{2}}{a_{j}^{2}} = -\frac{1}{2}e_{j}^{2}\sin^{2}(\lambda_{j})\sin^{2}(\lambda_{j}) - \frac{1}{2}e_{j}^{2}\cos^{2}(\lambda_{j})\cos^{2}(\lambda_{j}) + \frac{1}{2}e_{j}^{2}\sin^{2}(\lambda_{j})\cos^{2}(\lambda_{j}) + \frac{1}{2}e_{j}^{2}\sin^{2}(\lambda_{j}) + \frac{1}{2}e_{j}^{2}\cos^{2}(\lambda_{j}) + \frac{1}{2}e_{j}^{2}\cos^{2}(\lambda_{j}) + \frac{1}{2}e_{j}^{2}\cos^{2}(\lambda_{j}) + \frac{1}{2}e_{j}^{2}\cos^{2}(\lambda_{j}) + \frac{1}{2}e_{j}^{2}\sin^{2}(\lambda_{j}) + \frac{1}{2}e_{j}^{2}\sin^{2}(\lambda_{j}) + \frac{1}{2}e_{j}^{2}\sin^{2}(\lambda_{j}) + \frac{1}{2}e_{j}^{2}\cos^{2}(\lambda_{j}) + \frac{1}{2}e_{j}^{2}\sin^{2}(\lambda_{j}) + \frac{1}{2}e_{j}^{2}\sin^{2}(\lambda_{j})$$

где мы заменяем $\lambda_j + \delta_j$ вместо средней аномалии $l_j \equiv M_j$ [71, c.231-236-72, c.262-277].

$$X_{j} = -\frac{p_{j}q_{j}\sin(\lambda_{j})}{2\Lambda_{j}} - \frac{q_{j}^{2}\cos(\lambda_{j})}{2\Lambda_{j}} - \frac{5\eta_{j}^{2}\cos(\lambda_{j})}{8\Lambda_{j}} - \frac{3\eta_{j}^{2}\cos(3\lambda_{j})}{8\Lambda_{j}} - \frac{\eta_{j}\xi_{j}\sin(\lambda_{j})}{4\Lambda_{j}} - \frac{3\eta_{j}\xi_{j}\sin(\lambda_{j})}{4\Lambda_{j}} - \frac{-\frac{\eta_{j}\xi_{j}\sin(2\lambda_{j})}{2\sqrt{\Lambda_{j}}} - \frac{3\xi_{j}^{2}\cos(\lambda_{j})}{8\Lambda_{j}} + \frac{3\xi_{j}^{2}\cos(3\lambda_{j})}{8\Lambda_{j}} + \frac{\xi_{j}\cos(2\lambda_{j})}{2\sqrt{\Lambda_{j}}} + \cos(\lambda_{j}) - \frac{3\xi_{j}}{2\sqrt{\Lambda_{j}}},$$

$$Y_{j} = -\frac{p_{j}^{2}\sin(\lambda_{j})}{2\Lambda_{j}} - \frac{p_{j}q_{j}\cos(\lambda_{j})}{2\Lambda_{j}} - \frac{3\eta_{j}^{2}\sin(\lambda_{j})}{2\Lambda_{j}} - \frac{3\eta_{j}^{2}\sin(\lambda_{j})}{8\Lambda_{j}} - \frac{3\eta_{j}^{2}\sin(3\lambda_{j})}{8\Lambda_{j}} - \frac{\eta_{j}\xi_{j}\cos(\lambda_{j})}{8\Lambda_{j}} + \frac{\eta_{j}\xi_{j}\cos(\lambda_{j})}{4\Lambda_{j}} + \frac{3\eta_{j}\xi_{j}\cos(3\lambda_{j})}{4\Lambda_{j}} + \frac{\eta_{j}\xi_{j}\cos(3\lambda_{j})}{4\Lambda_{j}} + \frac{\eta_{j}\xi_{j}\cos(\lambda_{j})}{4\Lambda_{j}} + \frac{\eta_{j}\xi_{j}\cos(\lambda_{j})}{4\Lambda_{j}} + \frac{\eta_{j}\xi_{j}\cos(\lambda_{j})}{4\Lambda_{j}} + \frac{\eta_{j}\xi_{j}\cos(\lambda_{j})}{2\sqrt{\Lambda_{j}}} + \frac{\eta_{j}\xi_{j}\cos(\lambda_{j})}{4\Lambda_{j}} + \frac{\eta_{j}\xi_{j}\cos(\lambda_{j})}{2\sqrt{\Lambda_{j}}} + \frac{\eta_{j}\xi_{j}\cos(\lambda_{j})}{4\Lambda_{j}} + \frac{\eta_{j}\xi_{j}\cos(\lambda_{j})}{4\Lambda_{j}} + \frac{\eta_{j}\xi_{j}\cos(\lambda_{j})}{2\sqrt{\Lambda_{j}}} + \frac{\eta_{j}\xi_{j}\cos(\lambda_{j})}{4\Lambda_{j}} + \frac{\eta_{j}\xi_{j}\cos(\lambda_{j}$$

Расстояния задаем как:

$$\frac{r_j^2}{\left(\gamma_j\rho_j\right)^2} = \frac{\eta_j^2 \cos\left(2\lambda_j\right)}{2\Lambda_j} + \frac{3\eta_j^2}{2\Lambda_j} + \frac{\eta_j\xi_j \sin\left(2\lambda_j\right)}{\Lambda_j} + \frac{2\eta_j \sin\left(\lambda_j\right)}{\sqrt{\Lambda_j}} - \frac{\xi_j^2 \cos\left(2\lambda_j\right)}{2\Lambda_j} - \frac{2\xi_j \cos\left(\lambda_j\right)}{\sqrt{\Lambda_j}} + \frac{3\xi_j^2}{2\Lambda_o} + 1 \quad (3.29)$$

Определяем декартовые координаты тел *P*₁ и *P*₂ в виде степенных рядов в малых параметров до второго порядка:

$$\begin{aligned} q_{1} &= a_{1}\gamma_{1} \left(-\frac{p_{1}q_{1}\sin(\lambda_{1})}{2\Lambda_{1}} - \frac{q_{1}^{2}\cos(\lambda_{1})}{2\Lambda_{1}} + \xi_{1} \left(\frac{\cos(2\lambda_{1}) - 3}{2\sqrt{\Lambda_{1}}} - \frac{\eta_{1}(\sin(\lambda_{1}) + 3\sin(3\lambda_{1}))}{2\Lambda_{1}} \right) - \frac{p_{1}q_{1}\sin(\lambda_{1})}{2\Lambda_{1}} - \frac{q_{1}^{2}\cos(\lambda_{1})}{2\Lambda_{1}} - \frac{q_{1}^{2}\cos(\lambda_{1})}{2\Lambda_{1}} + \\ + \xi_{1} \left(\frac{\cos(2\lambda_{1}) - 3}{2\sqrt{\Lambda_{1}}} - \frac{\eta_{1}(\sin(\lambda_{1}) + 3\sin(3\lambda_{1}))}{4\Lambda_{1}} \right) - \frac{\eta_{1}^{2}(5\cos(\lambda_{1}) + 3\cos(3\lambda_{1}))}{8\Lambda_{1}} - \frac{\eta_{1}\sin(\lambda_{1})\cos(\lambda_{1})}{\sqrt{\Lambda_{1}}} - \frac{q_{2}^{2}\sin^{2}(\lambda_{1})\cos(\lambda_{1})}{2\Lambda_{1}} + \\ + \xi_{1} \left(\frac{\cos(2\lambda_{1}) - 3}{2\Lambda_{2}} - \frac{\eta_{1}(\sin(\lambda_{1}) + 3\sin(3\lambda_{1}))}{2\Lambda_{2}} \right) - \frac{\eta_{1}^{2}(5\cos(\lambda_{1}) + 3\cos(3\lambda_{1}))}{2\Lambda_{1}} - \frac{\eta_{1}\sin(\lambda_{1})\cos(\lambda_{1})}{2\Lambda_{1}} - \frac{\eta_{2}^{2}\cos(\lambda_{2})}{2\Lambda_{2}} + \\ + \xi_{2} \left(\frac{\cos(2\lambda_{2}) - 3}{2\Lambda_{2}} - \frac{\eta_{2}(\sin(\lambda_{2}) - 3}{2\Lambda_{2}} - \frac{\eta_{2}(\sin(\lambda_{2}) + 3\sin(3\lambda_{2}))}{4\Lambda_{2}} \right) \right) - \\ - \frac{\eta_{2}^{2}(5\cos(\lambda_{2}) + 3\cos(3\lambda_{2}))}{8\Lambda_{2}} - \frac{\eta_{2}\sin(\lambda_{2})\cos(\lambda_{2})}{\sqrt{\Lambda_{2}}} - \frac{3\xi_{2}^{2}\sin^{2}(\lambda_{2})\cos(\lambda_{2})}{2\Lambda_{2}} + \\ + \frac{\eta_{1}(\cos(2\lambda_{1}) + 3)}{2\Lambda_{1}} - \frac{\eta_{1}^{2}\sin(\lambda_{1})}{2\Lambda_{1}} + \\ + \frac{\eta_{1}(\cos(2\lambda_{1}) + 3)}{2\Lambda_{1}} - \frac{\eta_{1}^{2}\sin(\lambda_{1})\cos^{2}(\lambda_{1})}{2\Lambda_{2}} + \\ + \frac{\xi_{2}^{2}(3\sin(3\lambda_{1}) - 5\sin(\lambda_{1}))}{2\sqrt{\Lambda_{1}}} - \frac{\eta_{2}(\cos(\lambda_{2})}{2\Lambda_{2}} + \\ + \frac{\xi_{2}^{2}(3\sin(3\lambda_{2}) - 5\sin(\lambda_{2}))}{2\Lambda_{2}} + \\ + \frac{\eta_{2}(\cos(2\lambda_{2}) + 3)}{2\Lambda_{2}} - \frac{\eta_{2}^{2}\sin(\lambda_{2})\cos(\lambda_{2})}{2\Lambda_{2}} + \\ + \frac{\eta_{2}(\cos(2\lambda_{1}) + 3)}{2\Lambda_{2}} - \frac{\eta_{1}\sin(\lambda_{1})\cos(\lambda_{1})}{\Lambda_{1}} + \\ + \frac{\eta_{1}(\cos(2\lambda_{1}) - 3}{2\Lambda_{2}} - \frac{\eta_{2}\sin(\lambda_{2})\cos(\lambda_{2})}{2\Lambda_{2}} + \\ + \frac{\eta_{2}(\cos(2\lambda_{2}) + 3)}{2\Lambda_{2}} - \frac{\eta_{1}\sin(\lambda_{1})\cos(\lambda_{1})}{2\Lambda_{1}} + \\ + \frac{\eta_{1}(\cos(2\lambda_{1}) + 3)}{2\Lambda_{2}} - \frac{\eta_{1}\sin(\lambda_{1})\cos(\lambda_{1})}{\Lambda_{1}} + \\ + \frac{\eta_{1}(\cos(2\lambda_{1}) - 3)}{2\Lambda_{2}} + \\ + \frac{\eta_{2}(\cos(2\lambda_{2}) + 3)}{2\Lambda_{2}} - \frac{\eta_{1}\sin(\lambda_{1})\cos(\lambda_{1})}{\Lambda_{1}} + \\ \\ + \frac{\eta_{2}(\cos(2\lambda_{2}) - 3)}{2\Lambda_{2}} + \\ \\ + \frac{\eta_{2}(\cos(2\lambda_{2}) + 3)}{2\Lambda_{2}} - \frac{\eta_{2}\sin(\lambda_{2})\cos(\lambda_{2})}{\Lambda_{2}} + \\ \\ + \frac{\eta_{2}(\cos(2\lambda_{2}) - 3)}{2\Lambda_{2}} + \\ \\ + \frac{\eta_{2}(\cos(2\lambda_{2}) + 3)}{2\Lambda_{2}} - \frac{\eta_{2}\sin(\lambda_{2})\cos(\lambda_{2})}{\Lambda_{2}} + \\ \\ + \frac{\eta_{2}(\cos(2\lambda_{2}) - 3)}{2\Lambda_{2}} + \\ \\ \\ + \frac{\eta_{2}(\cos(2\lambda_{2}) + 3)}{2\Lambda_{2}} - \\ \\ \\ \\ + \frac{\eta_{2}(\cos(2\lambda_{2}) + 3)}{2\Lambda_{2}} -$$

Теперь у нас есть все координаты, и мы можем вычислить все члены гамильтониана в виде степенных рядов в малые параметры вплоть до второго порядка [71, с.236].

Чтобы иметь возможность расширить гамильтониан в степенных рядах, мы добавляем небольшой множитель ε_i к каждой координате и определяем

Соответствующее выражение r₁ и r₂ представляется в виде

$$r_{1} = a_{1}\gamma_{1} \left(\frac{\left(\eta_{1}\cos(\lambda_{1}) + \xi_{1}\sin(\lambda_{1})\right)^{2}}{\Lambda_{1}} + \frac{\eta_{1}\sin(\lambda_{1}) - \xi_{1}\cos(\lambda_{1})}{\sqrt{\Lambda_{1}}} + 1 \right),$$

$$r_{2} = a_{2}\gamma_{2} \left(\frac{\left(\eta_{2}\cos(\lambda_{2}) + \xi_{2}\sin(\lambda_{2})\right)^{2}}{\Lambda_{2}} + \frac{\eta_{2}\sin(\lambda_{2}) - \xi_{2}\cos(\lambda_{2})}{\sqrt{\Lambda_{2}}} + 1 \right).$$
(3.31)

 r_1^2 - в виде степенного ряда в малых параметрах до второго порядка

$$r_{1}^{2} = a_{1}^{2} \gamma_{1}^{2} \left(\frac{2(\eta_{1} \sin(\lambda_{1}) - \xi_{1} \cos(\lambda_{1}))}{\sqrt{\Lambda_{1}}} + \frac{2\eta_{1} \xi_{1} \sin(2\lambda_{1}) + \eta_{1}^{2} (\cos(2\lambda_{1}) + 3) - \xi_{1}^{2} (\cos(2\lambda_{1}) - 3)}{2\Lambda_{1}} + 1 \right).$$
(3.32)

3.3 Уравнения движения с учетом вековых возмущений в аналогах второй системы Пуанкаре

Вековая часть возмущающей функции $R_1^{(sec)} = -\frac{\ddot{\gamma}_1}{2\gamma_1}r_1^2$ и $R_2^{(sec)} = -\frac{\gamma_2}{2\gamma_2}r_2^2$ определяется условием, что все функции синуса и косинуса, зависящие от средних долгот $\lambda_1 \lambda_2$, при усреднении по $\lambda_1 \lambda_2$ обращаются в нуль. В результате получаем

$$R_{1}^{(\text{sec})} = -\frac{\ddot{\gamma}_{1}}{2\gamma_{1}}r_{1}^{2} = -\frac{\ddot{\gamma}_{1}}{2}a_{1}^{2}\gamma_{1}\left(1 + \frac{3}{2\Lambda_{1}}\left(\eta_{1}^{2} + \xi_{1}^{2}\right)\right),$$

$$R_{2}^{(\text{sec})} = -\frac{\ddot{\gamma}_{2}}{2\gamma_{2}}r_{2}^{2} = -\frac{\ddot{\gamma}_{2}}{2}a_{2}^{2}\gamma_{2}\left(1 + \frac{3}{2\Lambda_{2}}\left(\eta_{2}^{2} + \xi_{2}^{2}\right)\right).$$
(3.33)

Реактивная сила

$$Q_{1r} = \vec{Q}_1 \, \vec{r}_1 = \frac{\dot{m}_1}{m_1} \vec{V}_1 \vec{r}_1 - \frac{\dot{m}_0}{m_0} \vec{V}_0 \vec{r}_1,$$

$$Q_{2r} = \vec{Q}_2 \, \vec{r}_2 = \frac{\dot{m}_2}{m_2} \vec{V}_2 \vec{r}_2 - \frac{\dot{m}_0}{m_0} \vec{V}_0 \vec{r}_2.$$
(3.34)

Усредненная реактивная сила

$$\begin{aligned} Q_{1r} &= \frac{\dot{m}_{1}}{m_{1}} a_{1} \gamma_{1} V_{1r} \left(1 + \frac{1}{2\Lambda_{1}} \left(\eta_{1}^{2} + \xi_{1}^{2} \right) \right) - \frac{\dot{m}_{0}}{m_{0}} \frac{3a_{1} \gamma_{1}}{2\Lambda_{1}} \left(\left(V_{0z} p_{1} + V_{0y} \sqrt{\Lambda_{1}} \right) \eta_{1} - \left(V_{0z} q_{1} + V_{0x} \sqrt{\Lambda_{1}} \right) \xi_{1} \right), \end{aligned} \tag{3.35} \\ Q_{2r} &= \frac{\dot{m}_{2}}{m_{2}} a_{2} \gamma_{2} V_{2r} \left(1 + \frac{1}{2\Lambda_{2}} \left(\eta_{2}^{2} + \xi_{2}^{2} \right) \right) - \frac{\dot{m}_{0}}{m_{0}} \frac{3a_{2} \gamma_{2}}{2\Lambda_{2}} \left(\left(V_{0z} p_{2} + V_{0y} \sqrt{\Lambda_{2}} \right) \eta_{2} - \left(V_{0z} q_{2} + V_{0x} \sqrt{\Lambda_{2}} \right) \xi_{2} \right). \end{aligned} \\ \tilde{W}_{1} &= -\frac{1}{2} b_{1} r_{1}^{2} + U_{1} + \vec{Q}_{1} \vec{r}_{1}, \qquad r_{1}^{2} = x_{1}^{2} + y_{1}^{2} + z_{1}^{2}, \end{aligned} \\ \tilde{W}_{2} &= -\frac{1}{2} b_{2} r_{2}^{2} + U_{2} + \vec{Q}_{2} \vec{r}_{2}, \qquad r_{2}^{2} = x_{2}^{2} + y_{2}^{2} + z_{2}^{2}, \end{aligned} \tag{3.4*}$$

$$U_{1} = Gm_{2} \left(\frac{1}{|\vec{r}_{2} - \vec{r}_{1}|} - \frac{\vec{r}_{1}\vec{r}_{2}}{r_{2}^{3}} \right), \qquad U_{2} = Gm_{1} \left(\frac{1}{|\vec{r}_{2} - \vec{r}_{1}|} - \frac{\vec{r}_{1}\vec{r}_{2}}{r_{1}^{3}} \right), \qquad (3.6^{*})$$

$$b_1 = b_1(t) = \frac{1}{\gamma_1} \frac{d^2 \gamma_1}{dt^2}, \qquad b_2 = b_2(t) = \frac{1}{\gamma_2} \frac{d^2 \gamma_2}{dt^2}. \qquad (3.7^*)$$

Разложения $\frac{1}{|\vec{r_2} - \vec{r_1}|} = \frac{1}{\Delta}$ представлено в Приложении А.

С учетом полученных разложений выражение для $\frac{1}{|\vec{r}_2 - \vec{r}_1|}$, входящее в выражение для вековой части Гамильтониана, имеет вид [73-76]:

$$R_{12}^{(sec)} = \frac{A_{00}}{2} + \frac{\eta_{1}\eta_{2} \left(18B_{00}\alpha + 2B_{02}\alpha + 3\left(2C_{02}\alpha^{2} - 6C_{00}\left(\alpha^{2} + 1\right) + 7C_{01}\alpha + C_{03}\alpha + 2C_{02}\right)\right)}{16\alpha\sqrt{\Lambda_{1}}\sqrt{\Lambda_{2}}} - \frac{\eta_{1}^{2} \left(6B_{00}\alpha + 4B_{01} - 6C_{00}\alpha^{2} + 12C_{01}\alpha - 15C_{00} + 9C_{02}\right)}{16\Lambda_{1}} - \frac{\eta_{2}^{2} \left(4B_{01}\alpha^{2} + 6B_{00}\alpha - 15C_{00}\alpha^{2} + 9C_{02}\alpha^{2} + 12C_{01}\alpha - 6C_{00}\right)}{16\alpha^{2}\Lambda_{2}} - \frac{\xi_{1}^{2} \left(6B_{00}\alpha + 4B_{01} - 6C_{00}\alpha^{2} + 12C_{01}\alpha - 15C_{00} + 9C_{02}\right)}{16\Lambda_{1}} - \frac{\xi_{2}^{2} \left(4B_{01}\alpha^{2} + 6B_{00}\alpha - 15C_{00}\alpha^{2} + 9C_{02}\alpha^{2} + 12C_{01}\alpha - 6C_{00}\right)}{16\alpha^{2}\Lambda_{2}} + \frac{\xi_{1}\xi_{2} \left(18B_{00}\alpha + 2B_{02}\alpha + 3\left(2C_{02}\alpha^{2} - 6C_{00}\left(\alpha^{2} + 1\right) + 7C_{01}\alpha + C_{03}\alpha + 2C_{02}\right)\right)}{16\alpha\sqrt{\Lambda_{1}}\sqrt{\Lambda_{2}}} - \frac{B_{01}p_{1}^{2}}{8\Lambda_{1}} + \frac{B_{01}p_{2}p_{1}}{4\sqrt{\Lambda_{1}}\sqrt{\Lambda_{2}}} - \frac{B_{01}q_{1}^{2}}{8\Lambda_{2}} - \frac{B_{01}q_{1}^{2}}{8\Lambda_{2}} - \frac{B_{01}q_{1}^{2}}{8\Lambda_{2}} - \frac{B_{01}q_{2}^{2}}{8\Lambda_{2}} \right)$$
(3.36)

Вековые части возмущающей функции $\frac{\vec{r}_1 \cdot \vec{r}_2}{\vec{r}_1^3}$ и $\frac{\vec{r}_1 \cdot \vec{r}_2}{\vec{r}_2^3}$ равны нулю.

$$\Pi_{11} = -\frac{6\alpha B 0_0 + 4B 0_1 - 15C 0_0 - 6\alpha^2 C 0_0 + 12\alpha C 0_1 + 9C 0_2}{8\Lambda_1},$$

$$\Pi_{22} = \frac{3C 0_0}{4\alpha^2 \Lambda_2} - \frac{6B 0_0 + 12C 0_1}{8\alpha \Lambda_2} - \frac{4B 0_1 - 15C 0_0 + 9C 0_2}{8\Lambda_2},$$

$$\Pi_{12} = \frac{-18C 0_0 + 6C 0_2}{8\alpha \sqrt{\Lambda_1} \sqrt{\Lambda_2}} + \frac{\alpha \left(-18C 0_0 + 6C 0_2\right)}{8\sqrt{\Lambda_1} \sqrt{\Lambda_2}} + \frac{18B 0_0 + 2B 0_2 + 21C 0_1 + 3C 0_3}{8\sqrt{\Lambda_1} \sqrt{\Lambda_2}}.$$
(3.37)

В итоге мы получаем вековую часть возмущающей функции в виде:

$$W_{1}^{(\text{sec})} = \frac{Gm_{2}}{2} (A_{00} + \Pi_{11} (\eta_{1}^{2} + \xi_{1}^{2}) + \Pi_{22} (\eta_{2}^{2} + \xi_{2}^{2}) + \Pi_{12} (\eta_{1}\eta_{2} + \xi_{1}\xi_{2}) - \frac{B_{01}}{2} \left(\frac{p_{1}^{2} + q_{1}^{2}}{2\Lambda_{1}} + \frac{p_{2}^{2} + q_{2}^{2}}{2\Lambda_{2}} - \frac{(p_{1}p_{2} + q_{1}q_{2})}{\sqrt{\Lambda_{1}\Lambda_{2}}} \right) \right),$$

$$W_{2}^{(\text{sec})} = \frac{Gm_{1}}{2} (A_{00} + \Pi_{11} (\eta_{1}^{2} + \xi_{1}^{2}) + \Pi_{22} (\eta_{2}^{2} + \xi_{2}^{2}) + \Pi_{12} (\eta_{1}\eta_{2} + \xi_{1}\xi_{2}) - \frac{B_{01}}{2} \left(\frac{p_{1}^{2} + q_{1}^{2}}{2\Lambda_{1}} + \frac{p_{2}^{2} + q_{2}^{2}}{2\Lambda_{2}} - \frac{(p_{1}p_{2} + q_{1}q_{2})}{\sqrt{\Lambda_{1}\Lambda_{2}}} \right) \right).$$
(3.38)

где коэффициенты Лапласа A₁₀ и A₀₀ определяются как [23]

$$A_{10} = \frac{4K\left(\frac{4\alpha}{\left(\alpha+1\right)^{2}}\right)}{\pi a_{2}\left(\alpha+1\right)\gamma_{2}}, \quad A_{00} = \frac{2\left(\left(\alpha^{2}+1\right)K\left(\frac{4\alpha}{\left(\alpha+1\right)^{2}}\right)-\left(\alpha+1\right)^{2}E\left(\frac{4\alpha}{\left(\alpha+1\right)^{2}}\right)\right)}{\pi a_{2}\alpha\left(\alpha+1\right)\gamma_{2}}, \quad (3.39)$$

Получаем вековую часть Гамильтониана через коэффициенты Лапласа:

$$H_{1}^{(sec)} = -\frac{K_{1}}{2\gamma_{1}^{2}\Lambda_{1}^{2}} + \frac{1}{2}\gamma_{1}\overset{\cdots}{\gamma}_{1}a_{1}^{2}\left(1 + \frac{3}{2\Lambda_{1}}\left(\xi_{1}^{2} + \eta_{1}^{2}\right)\right) - Q_{1r} - \frac{Gm_{2}}{2}\left(A_{00} + \Pi_{11}\left(\eta_{1}^{2} + \xi_{1}^{2}\right) + \Pi_{22}\left(\eta_{2}^{2} + \xi_{2}^{2}\right) + \Pi_{12}\left(\eta_{1}\eta_{2} + \xi_{1}\xi_{2}\right) - \frac{B_{01}}{2}\left(\frac{p_{1}^{2} + q_{1}^{2}}{2\Lambda_{1}} + \frac{p_{2}^{2} + q_{2}^{2}}{2\Lambda_{2}} - \frac{\left(p_{1}p_{2} + q_{1}q_{2}\right)}{\sqrt{\Lambda_{1}\Lambda_{2}}}\right)\right),$$

$$H_{2}^{(sec)} = -\frac{K_{2}}{2\gamma_{2}^{2}\Lambda_{2}^{2}} + \frac{1}{2}\gamma_{2}\overset{\cdots}{\gamma}_{2}a_{2}^{2}\left(1 + \frac{3}{2\Lambda_{2}}\left(\xi_{2}^{2} + \eta_{2}^{2}\right)\right) - Q_{2r} - \frac{Gm_{1}}{2}\left(A_{00} + \Pi_{11}\left(\eta_{1}^{2} + \xi_{1}^{2}\right) + \Pi_{22}\left(\eta_{2}^{2} + \xi_{2}^{2}\right) + \Pi_{12}\left(\eta_{1}\eta_{2} + \xi_{1}\xi_{2}\right) - \frac{B_{01}}{2}\left(\frac{p_{1}^{2} + q_{1}^{2}}{2\Lambda_{1}} + \frac{p_{2}^{2} + q_{2}^{2}}{2\Lambda_{2}} - \frac{\left(p_{1}p_{2} + q_{1}q_{2}\right)}{\sqrt{\Lambda_{1}\Lambda_{2}}}\right)\right).$$

$$(3.40)$$

$$H_{12}^{(sec)} = -\frac{K_{2}}{2\gamma_{2}^{2}\Lambda_{2}^{2}} + \frac{1}{2}\gamma_{2}\overset{\cdots}{\gamma_{2}}a_{2}^{2}\left(1 + \frac{3}{2\Lambda_{2}}\left(\xi_{2}^{2} + \eta_{2}^{2}\right)\right) - Q_{2r} - \frac{Gm_{1}}{2}\left(A_{00} + \Pi_{11}\left(\eta_{1}^{2} + \xi_{1}^{2}\right) + \Pi_{22}\left(\eta_{2}^{2} + \xi_{2}^{2}\right) + \Pi_{12}\left(\eta_{1}\eta_{2} + \xi_{1}\xi_{2}\right) - \frac{B_{01}}{2}\left(\frac{p_{1}^{2} + q_{1}^{2}}{2\Lambda_{1}} + \frac{p_{2}^{2} + q_{2}^{2}}{2\Lambda_{2}} - \frac{\left(p_{1}p_{2} + q_{1}q_{2}\right)}{\sqrt{\Lambda_{1}\Lambda_{2}}}\right)\right).$$

где

$$\begin{split} K_1 &= G(m_{00} + m_{10}), \quad K_2 = G(m_{00} + m_{20}), \quad \Lambda_1 = \sqrt{K_1 a_1}, \quad \Lambda_2 = \sqrt{K_2 a_2}, \\ \gamma_1(t) &= \frac{m_{00} + m_{10}}{m_0(t) + m_1(t)}, \quad \gamma_2(t) = \frac{m_{00} + m_{20}}{m_0(t) + m_2(t)}. \end{split}$$

$$Q_{1r} = \frac{\dot{m}_1}{m_1} a_1 \gamma_1 V_{1r} \left(1 + \frac{1}{2\Lambda_1} \left(\eta_1^2 + \xi_1^2 \right) \right) - \frac{\dot{m}_0}{m_0} \frac{3a_1 \gamma_1}{2\Lambda_1} \left(\left(V_{0z} p_1 + V_{0y} \sqrt{\Lambda_1} \right) \eta_1 - \left(V_{0z} q_1 + V_{0x} \sqrt{\Lambda_1} \right) \xi_1 \right),$$

$$Q_{2r} = \frac{\dot{m}_2}{m_2} a_2 \gamma_2 V_{2r} \left(1 + \frac{1}{2\Lambda_2} \left(\eta_2^2 + \xi_2^2 \right) \right) - \frac{\dot{m}_0}{m_0} \frac{3a_2 \gamma_2}{2\Lambda_2} \left(\left(V_{0z} p_2 + V_{0y} \sqrt{\Lambda_2} \right) \eta_2 - \left(V_{0z} q_2 + V_{0x} \sqrt{\Lambda_2} \right) \xi_2 \right).$$
(3.41)

и $V_{0x}, V_{0y}, V_{0z}, V_{1x}, V_{1y}, V_{1z}, V_{2x}, V_{2y}, V_{2z}$ - считаются постоянными.

Уравнения Гамильтониана

$$\dot{\eta}_{j} = \frac{\partial H_{1}^{(\text{sec})}}{\partial \xi_{j}}, \quad \dot{\xi}_{j} = -\frac{\partial H_{1}^{(\text{sec})}}{\partial \eta_{j}}, \quad \dot{q}_{j} = \frac{\partial H_{1}^{(\text{sec})}}{\partial p_{j}}, \quad \dot{p}_{j} = -\frac{\partial H_{1}^{(\text{sec})}}{\partial q_{j}}, \quad j = 1, 2.$$
(3.42)

Так как Гамильтонианы $H_j^{(sec)}$ не зависят от координат λ_j , то соответствующий момент $\Lambda_j = const$ и большая полуось $a_j = const$.

Эволюционных уравнения в аналогах второй системы элементов Пуанкаре в раскрытом виде:

$$\begin{split} \dot{\eta}_{1} &= \frac{\partial H_{1}^{(sec)}}{\partial \xi_{1}} = \frac{\partial H_{1}^{(sec)}}{\partial \xi_{1}} = \frac{3}{2\Lambda_{1}} \gamma_{1} \gamma_{1} a_{1}^{2} \xi_{1} - \frac{\dot{m}_{1}}{m_{1}} \frac{a_{1} \gamma_{1} V_{1,r} \xi_{1}}{\Lambda_{1}} - \frac{\dot{m}_{0}}{m_{0}} \frac{3a_{1} \gamma_{1}}{2\Lambda_{1}} \left(V_{0z} q_{1} + V_{0x} \sqrt{\Lambda_{1}} \right) - \frac{Gm_{2}}{2} \left(2\Pi_{11} \xi_{1} + \Pi_{12} \xi_{2} \right), \\ \dot{\xi}_{1} &= -\frac{\partial H_{1}^{(sec)}}{\partial \eta_{1}} = -\frac{3}{2\Lambda_{1}} \gamma_{1} \gamma_{1} a_{1}^{2} \eta_{1} + \frac{\dot{m}_{1}}{m_{1}} \frac{a_{1} \gamma_{1} V_{1,r} \eta_{1}}{\Lambda_{1}} - \frac{\dot{m}_{0}}{m_{0}} \frac{3a_{1} \gamma_{1}}{2\Lambda_{1}} \left(V_{0z} p_{1} + V_{0y} \sqrt{\Lambda_{1}} \right) + \frac{Gm_{2}}{2} \left(2\Pi_{11} \eta_{1} + \Pi_{12} \eta_{2} \right), \\ \dot{\eta}_{2} &= \frac{\partial H_{2}^{(sec)}}{\partial \xi_{2}} = \frac{\partial H_{2}^{(sec)}}{\partial \xi_{2}} = \frac{3}{2\Lambda_{2}} \gamma_{2} \gamma_{2} a_{2}^{2} \xi_{2} - \frac{\dot{m}_{2}}{m_{2}} \frac{a_{2} \gamma_{2} V_{2,r} \xi_{2}}{\Lambda_{2}} - \frac{\dot{m}_{0}}{m_{0}} \frac{3a_{2} \gamma_{2}}{2\Lambda_{2}} \left(V_{0z} q_{2} + V_{0x} \sqrt{\Lambda_{2}} \right) - \frac{Gm_{2}}{2} \left(2\Pi_{22} \xi_{2} + \Pi_{12} \xi_{1} \right), \\ \dot{\xi}_{2} &= -\frac{\partial H_{2}^{(sec)}}{\partial \xi_{2}} = -\frac{3}{2\Lambda_{2}} \gamma_{2} \gamma_{2} a_{2}^{2} q_{2} + \frac{\dot{m}_{2}}{m_{2}} \frac{a_{2} \gamma_{2} V_{2,r} \xi_{2}}{\Lambda_{2}} - \frac{\dot{m}_{0}}{m_{0}} \frac{3a_{2} \gamma_{2}}{2\Lambda_{2}} \left(V_{0z} q_{2} + V_{0x} \sqrt{\Lambda_{2}} \right) - \frac{Gm_{2}}{2} \left(2\Pi_{22} \xi_{2} + \Pi_{12} \xi_{1} \right), \\ \dot{\xi}_{2} &= -\frac{\partial H_{2}^{(sec)}}{\partial \eta_{2}} = -\frac{3}{2\Lambda_{2}} \gamma_{2} \gamma_{2} a_{2}^{2} q_{2} + \frac{\dot{m}_{2}}{m_{2}} \frac{a_{2} \gamma_{2} V_{2,r} \xi_{2}}{\Lambda_{2}} - \frac{\dot{m}_{0}}{m_{0}} \frac{3a_{2} \gamma_{2}}{2\Lambda_{2}} \left(V_{0z} q_{2} + V_{0y} \sqrt{\Lambda_{2}} \right) + \frac{Gm_{2}}{2} \left(2\Pi_{22} \eta_{2} + \Pi_{12} \xi_{1} \right), \\ \dot{\xi}_{1} &= \frac{\partial H_{1}^{(sec)}}{\partial \eta_{2}} = -\frac{3}{2} \frac{B_{01}}{2} \left(\frac{p_{1}}{\Lambda_{1}} - \frac{p_{2}}{\sqrt{\Lambda_{1}\Lambda_{2}}} \right) + \frac{\dot{m}_{0}}{m_{0}} \frac{3a_{1} \gamma_{1}}{2\Lambda_{1}} V_{0z} \eta_{1}, \\ \dot{\eta}_{1} &= -\frac{\partial H_{1}^{(sec)}}{\partial q_{1}} = -\frac{Gm_{2}}{2} \frac{B_{01}}{2} \left(\frac{q_{1}}{\Lambda_{1}} - \frac{q_{2}}{\sqrt{\Lambda_{1}\Lambda_{2}}} \right) + \frac{\dot{m}_{0}}{m_{0}} \frac{3a_{1} \gamma_{1}}{2\Lambda_{1}} V_{0z} \xi_{1}, \\ \dot{\eta}_{2} &= -\frac{\partial H_{2}^{(sec)}}{\partial q_{2}} = -\frac{Gm_{1}}{2} \frac{B_{01}}{2} \left(\frac{q_{2}}{\Lambda_{2}} - \frac{\eta_{1}}{\sqrt{\Lambda_{1}\Lambda_{2}}} \right) + \frac{\dot{m}_{0}}{m_{0}} \frac{3a_{2} \gamma_{2}}{2\Lambda_{2}} V_{0z} Y_{0z} \xi_{2}. \end{split}$$

3.4 Уравнения движения в безразмерных переменных в аналогах второй системы Пуанкаре

Введем следующие безразмерные величины:

$$t^{*} = \omega_{0}t, \quad \omega_{0} = \sqrt{Gm_{00} / a_{1}^{3}}, \quad r^{*} = r / a_{1},$$

$$m^{*} = m / m_{00}: \quad m_{1} = m_{00}m_{1}^{*}, \quad m_{2} = m_{00}m_{2}^{*}$$
(3.44)

Канонические переменные ξ, η, p, q получаем с учетом множителя $(Gm_{00}a_1)^{1/4}$:

$$\xi = \left(Gm_{00}a_{1}\right)^{1/4}\xi^{*}, \quad a_{1}^{*} = 1, \ a_{2} = a_{1} \cdot a_{2}^{*},$$

$$\Lambda_{1} = \sqrt{Gm_{00}a_{1}}\sqrt{1 + m_{10}^{*}}, \quad \Lambda_{2} = \sqrt{Gm_{00}a_{1}}\sqrt{\left(1 + m_{20}^{*}\right)a_{2}^{*}},$$
(3.45)

где "*"- обозначения безразмерных величин. В результате уравнения движения принимает вид:

$$\begin{split} \dot{\eta}_{1} &= \frac{3}{2\sqrt{1+m_{10}}} \gamma_{1} \ddot{\gamma}_{1} \xi_{1} - \frac{m_{2}}{2} \left(2\Pi_{11}\xi_{1} + \Pi_{12}\xi_{2} \right) - \frac{\dot{m}_{1}}{m_{1}} \frac{\gamma_{1}V_{1,}\xi_{1}}{\sqrt{1+m_{10}}} - \frac{\dot{m}_{0}}{m_{0}} \frac{3\gamma_{1}}{2\sqrt{1+m_{10}}} \left(V_{0z}q_{1} + V_{0x}\left(1+m_{10}\right)^{V/4} \right), \\ \dot{\xi}_{1} &= -\frac{3}{2\sqrt{1+m_{10}}} \gamma_{1} \ddot{\gamma}_{1} \eta_{1} + \frac{m_{2}}{2} \left(2\Pi_{11}\eta_{1} + \Pi_{12}\eta_{2} \right) + \frac{\dot{m}_{1}}{m_{1}} \frac{\gamma_{1}V_{1,}\eta_{1}}{\sqrt{1+m_{10}}} - \frac{\dot{m}_{0}}{m_{0}} \frac{3\gamma_{1}}{2\sqrt{1+m_{10}}} \left(V_{0z}q_{1} + V_{0x}\left(1+m_{10}\right)^{V/4} \right), \\ \dot{\eta}_{2} &= \frac{3}{2\sqrt{(1+m_{20})}} \gamma_{2} \ddot{\gamma}_{2} a_{2}^{3/2}\xi_{2} - \frac{m_{1}}{2} \left(2\Pi_{22}\xi_{2} + \Pi_{12}\xi_{1} \right) - \frac{\dot{m}_{2}}{m_{2}} \frac{a_{2}\gamma_{2}V_{2,}\xi_{2}}{\sqrt{a_{2}\left(1+m_{20}\right)}} - \frac{\dot{m}_{0}}{m_{0}} \frac{3a_{2}\gamma_{2}}{2\sqrt{a_{2}\left(1+m_{20}\right)}} \left(V_{0z}q_{2} + V_{0x}\left(a_{2}\left(1+m_{20}\right)\right)^{V/4} \right), \\ \dot{\xi}_{2} &= -\frac{3}{2\sqrt{(1+m_{20})}} \gamma_{2} \ddot{\gamma}_{2} a_{2}^{3/2}\eta_{2} + \frac{m_{1}}{2} \left(2\Pi_{22}\eta_{2} + \Pi_{12}\eta_{1} \right) + \frac{\dot{m}_{2}}{m_{2}} \frac{a_{2}\gamma_{2}V_{2,}\eta_{2}}{\sqrt{a_{2}\left(1+m_{20}\right)}} - \frac{\dot{m}_{0}}{m_{0}} \frac{3a_{2}\gamma_{2}}{2\sqrt{a_{2}\left(1+m_{20}\right)}} \left(V_{0z}q_{2} + V_{0x}\left(a_{2}\left(1+m_{20}\right)\right)^{V/4} \right), \\ \dot{\xi}_{3} &= -\frac{3}{2\sqrt{(1+m_{20})}} \gamma_{2} \ddot{\gamma}_{2} a_{2}^{3/2}\eta_{2} + \frac{m_{1}}{2} \left(2\Pi_{22}\eta_{2} + \Pi_{12}\eta_{1} \right) + \frac{\dot{m}_{2}}{m_{2}} \frac{a_{2}\gamma_{2}V_{2,}\eta_{2}}{\sqrt{a_{2}\left(1+m_{20}\right)}} - \frac{\dot{m}_{0}}{m_{0}} \frac{3a_{2}\gamma_{2}}{2\sqrt{a_{2}\left(1+m_{20}\right)}} \left(V_{0z}q_{2} + V_{0x}\left(a_{2}\left(1+m_{20}\right)\right)^{V/4} \right), \\ \dot{\xi}_{4} &= -\frac{B_{0}m_{2}}{4} \left(\frac{p_{1}}{\sqrt{1+m_{10}}} - \frac{p_{2}}{\left(\left(1+m_{10}\right)a_{2}\left(1+m_{20}\right)\right)^{V/4}} \right) + \frac{\dot{m}_{0}}{m_{0}} \frac{3\gamma_{1}}{2\sqrt{1+m_{10}}} V_{0z}\xi_{1}, \\ \dot{\eta}_{2} &= -\frac{B_{0}m_{1}}{4} \left(\frac{p_{2}}{\sqrt{\left(1+m_{20}\right)a_{2}}} - \frac{p_{1}}{\left(\left(1+m_{10}\right)a_{2}\left(1+m_{20}\right)\right)^{V/4}} \right) + \frac{\dot{m}_{0}}{m_{0}} \frac{3a_{2}\gamma_{2}}{2\sqrt{a_{2}\left(1+m_{20}\right)}}} V_{0z}\xi_{2}, \\ \dot{\eta}_{2} &= -\frac{B_{0}m_{1}}{4} \left(\frac{q_{2}}{\sqrt{\left(1+m_{20}\right)a_{2}}} - \frac{q_{1}}{\left(\left(1+m_{10}\right)a_{2}\left(1+m_{20}\right)\right)^{V/4}} \right) + \frac{\dot{m}_{0}}{m_{0}} \frac{3a_{2}\gamma_{2}}{2\sqrt{a_{2}\left(1+m_{20}\right)}} V_{0z}\xi_{2}. \end{split}$$
(3.46)

Отметим, что уравнения (3.46) записаны в безразмерных переменных, для которых использованы обычные обозначения без символа «*».

3.5 Численные решения уравнений возмущенного движения в аналогах второй системы Пуанкаре

В первой главе по результатам анализа представлена выборка М-звёзд, у которых обнаружены 2 планеты и вычислены все необходимые орбитальные параметры (The Extrasolar Planets Encyclopedia). Для проведения численных расчетов выбрана система GJ 180 - GJ 180b, GJ 180c.

Система GJ180-GJ180b-GJ180c с двумя планетами соответствует примечательной конфигурации с соотношением их орбитальных периодов 7:5. Абсолютные значения орбитальных периодов: 17,38 сут. - первого объекта и 24,33 сут. – второго объекта. Эти параметры могут соответствовать (но не подразумевать) установившемуся орбитальному резонансу 7:5. Внешний

кандидат системы GJ 180с располагается в так называемой «зоне обитаемости». Оценка нижнего предела массы внешнего кандидата - 6,4 (массы Земли) позволяет классифицировать этот объект как сверхземную планету, расположенную в зоне обитаемости. Физические параметры и динамические характеристики системы, а также, особенности эволюции неоднократно обсуждались в различных публикациях [75].

Безразмерные начальные условия		
$m_0 = 1$, $m_1 = 6047 \times 10^{-8}$, $m_2 = 4651 \times 10^{-8}$, $a_1 = 1$, $a_2 = 5/4$, $e_1 = 0.11$, $e_2 = 0.09$,		
$i_1 = \pi / 360^\circ$, $i_2 = \pi / 180^\circ$, $\Omega_1 = 0^\circ$, $\Omega_2 = 1 / 10^\circ$, $\pi_1 = 11.46^\circ \pi / 180^\circ$, $\pi_2 = 243^\circ \pi / 180^\circ + 1 / 10^\circ$		
Постоянная масса	Переменная масса, в изотропном	Переменная масса,
	случае	анизотропная случая
1	2	3
$n_0 = 2, n_1 = 2, n_2 = 3,$	$n_0 = 2, n_1 = 2, n_2 = 3,$	$n_0 = 2, n_1 = 2, n_2 = 3,$
$\alpha_0=0, \alpha_1=0, \alpha_2=0.$	$\alpha_0 = 1/100000,$	$\alpha_0 = 1/100000,$
	$\alpha_1 = 1/200000,$	$\alpha_1 = 1/200000,$
	$\alpha_2 = 1/400000.$	$\alpha_2 = 1/400000.$
$V_{1r} = 0, V_{2r} = 0,$	$V_{1r} = 0, V_{2r} = 0,$	$V_{1r} = 0, V_{2r} = 0,$
$V_{0x} = 0, V_{0y} = 0, V_{0z} = 0;$	$V_{0x} = 0, V_{0y} = 0, V_{0z} = 0;$	$V_{0x} = 0.05, V_{0y} = 0, V_{0z} = 0;$

Таблица 2 – Параметры численного моделирования

$$\begin{aligned} \frac{d\eta_{1}}{dt} &= K_{1}\eta(t)\xi_{1}(t) - M_{01}(t)\left(\sqrt[4]{m_{10}+1}V_{0x} + V_{0z}q_{1}(t)\right) - \\ -V_{1r}M_{1}(t)\xi_{1}(t) - \frac{1}{2}m_{2}(t)\left(2\xi_{1}(t)\Pi_{11}a(t) + \xi_{2}(t)\Pi_{12}a(t)\right), \\ \frac{d\xi_{1}}{dt} &= -K_{1}\eta(t)\eta_{1}(t) - M_{01}(t)\left(\sqrt[4]{m_{10}+1}V_{0y} + V_{0z}p_{1}(t)\right) + \\ +V_{1r}M_{1}(t)\eta_{1}(t) + \frac{1}{2}m_{2}(t)\left(2\eta_{1}(t)\Pi_{11}a(t) + \eta_{2}(t)\Pi_{12}a(t)\right), \\ \frac{d\eta_{2}}{dt} &= -M_{02}(t)\left(V_{0x}\sqrt[4]{a_{2}(m_{20}+1)} + V_{0z}q_{2}(t)\right) + \\ +K_{2}\eta(t)\xi_{2}(t) - \frac{1}{2}m_{1}(t)\left(\xi_{1}(t)\Pi_{12}a(t) + 2\xi_{2}(t)\Pi_{22}a(t)\right) - V_{2r}M_{2}(t)\xi_{2}(t), \\ \frac{d\xi_{2}}{dt} &= -M_{02}(t)\left(V_{0y}\sqrt[4]{a_{2}(m_{20}+1)} + V_{0z}p_{2}(t)\right) - \\ -K_{2}\eta(t)\eta_{2}(t) + \frac{1}{2}m_{1}(t)(\eta_{1}(t)\Pi_{12}a(t) + 2\eta_{2}(t)\Pi_{22}a(t)) + V_{2r}M_{2}(t)\eta_{2}(t), \\ \frac{dq_{1}}{dt} &= \frac{1}{4}K_{3}pq(t)m_{2}(t)\left(\frac{p_{1}(t)}{\sqrt{m_{10}+1}} - \frac{p_{2}(t)}{\sqrt[4]{a_{2}}\sqrt[4]{m_{10}+1}\sqrt[4]{m_{20}+1}}\right) + V_{0z}M_{01}(t)\eta_{1}(t), \\ \frac{dq_{2}}{dt} &= V_{0z}M_{01}(t)\xi_{1}(t) - \frac{1}{4}K_{3}pq(t)m_{2}(t)\left(\frac{q_{1}(t)}{\sqrt{m_{10}+1}} - \frac{q_{2}(t)}{\sqrt[4]{a_{2}}\sqrt[4]{m_{10}+1}\sqrt[4]{m_{20}+1}}\right) + V_{0z}M_{02}(t)\eta_{2}(t), \\ \frac{dp_{2}}{dt} &= V_{0z}M_{01}(t)\xi_{1}(t) - \frac{1}{4}K_{3}pq(t)m_{1}(t)\left(\frac{q_{2}(t)}{\sqrt{a_{2}(m_{20}+1)}} - \frac{q_{1}(t)}{\sqrt[4]{a_{2}}\sqrt[4]{m_{10}+1}\sqrt[4]{m_{20}+1}}\right) + V_{0z}M_{02}(t)\eta_{2}(t), \\ \frac{dp_{2}}{dt} &= V_{0z}M_{02}(t)\xi_{2}(t) - \frac{1}{4}K_{3}pq(t)m_{1}(t)\left(\frac{q_{2}(t)}{\sqrt{a_{2}(m_{20}+1)}} - \frac{q_{1}(t)}{\sqrt[4]{a_{2}}\sqrt[4]{m_{10}+1}\sqrt[4]{m_{20}+1}}\right) + \\ \frac{dp_{2}}{\sqrt[4]{a_{2}}}} = V_{0z}M_{02}(t)\xi_{2}(t) - \frac{1}{4}K_{3}pq(t)m_{1}(t)\left(\frac{q_{2}(t)}{\sqrt{a_{2}(m_{20}+1)}} - \frac{q_{1}(t)}{\sqrt[4]{a_{2}}\sqrt[4]{m_{10}+1}\sqrt[4]{m_{20}+1}}\right) - \\ \frac{dp_{2}}{\sqrt[4]{a_{2}}}} = V_{0z}M_{02}(t)\xi_{2}(t) - \frac{1}{4}K_{3}pq(t)m_{1}(t)\left(\frac{q_{2}(t)}{\sqrt{a_{2}(m_{20}+1)}} - \frac{q_{1}(t)}{\sqrt[4]{a_{2}}\sqrt[4]{m_{10}+1}\sqrt[4]{m_{20}+1}}\right) - \\ \frac{dp_{2}}{\sqrt[4]{a_{2}}}} = V_{0z}M_{02}(t)\xi_{2}(t) - \frac{1}{4}K_{3}pq(t)m_{1}(t)\left(\frac{q_{2}(t)}{\sqrt{a_{2}(m_{20}+1)}} - \frac{q_{1}(t)}{\sqrt[4]{a_{2}}\sqrt[4]{m_{10}+1}\sqrt[4]{m_{20}+1}}\right) - \\ \frac{dp_{2}}{\sqrt[4]{a_{2}}} = V_{0z}M_{02}(t)\xi_{2}(t) - \frac{1}{4}K_{3}pq(t)m_{1}(t)\left(\frac{q_{2}(t)}{\sqrt[4]{a_{2}$$

где начальные условия выберем в виде:

$$\begin{aligned} \xi_{10} &= \left(1 + m_{10}\right)^{1/4} e_{10} \cos \pi_{10}, \quad \xi_{20} = \left(a_2 \left(1 + m_{20}\right)\right)^{1/4} e_{20} \cos \pi_{20}, \\ \eta_{10} &= -\left(1 + m_{10}\right)^{1/4} e_{10} \sin \pi_{10}, \quad \eta_{20} = -\left(a_2 \left(1 + m_{20}\right)\right)^{1/4} e_{20} \sin \pi_{20}, \\ q_{10} &= -2\left(1 + m_{10}\right)^{1/4} \sin \Omega_{10} \sin \left(i_{10} / 2\right), \quad q_{20} = -2\left(a_2 \left(1 + m_{20}\right)\right)^{1/4} \sin \Omega_{20} \sin \left(i_{20} / 2\right), \\ p_{10} &= 2\left(1 + m_{10}\right)^{1/4} \cos \Omega_{10} \sin \left(i_{10} / 2\right), \quad p_{20} = 2\left(a_2 \left(1 + m_{20}\right)\right)^{1/4} \cos \Omega_{20} \sin \left(i_{20} / 2\right). \end{aligned}$$

Закон Эддингтона-Джинса

$$m(t) = \left(m_0^{1-n} - (1-n)t\alpha_0\right)^{\frac{1}{1-n}}$$
(3.48)

В случае постоянной массы

$$m_{0}(t) = \frac{m_{00}(t)}{\left(m_{00}^{1-n} - (1-n)t\alpha_{0}\right)^{\frac{1}{1-n}}} = 1, \qquad m_{1}(t) = \frac{m_{10}(t)}{\left(m_{10}^{1-n} - (1-n)t\alpha_{0}\right)^{\frac{1}{1-n}}} = \frac{6047}{10000000},$$

$$m_{2}(t) = \frac{m_{20}(t)}{\left(m_{20}^{1-n} - (1-n)t\alpha_{0}\right)^{\frac{1}{1-n}}} = \frac{4651}{10000000}.$$
(3.49)

$$\gamma_1(t) = \frac{m_{00} + m_{10}}{m_0(t) + m_1(t)} = 1, \quad \gamma_2(t) = \frac{m_{00} + m_{20}}{m_0(t) + m_2(t)} = 1.$$
(3.50)

В случае изотропной, переменной массы

В случае анизотропной массы, в различных скоростях

В уравнении (3.47) использованы следующие обозначения:

$$M_{01}(t) = \frac{3\gamma_1(t)\dot{m}_0(t)}{2\sqrt{m_{10} + 1}m_0(t)}, \qquad M_1(t) = \frac{\gamma_1(t)\dot{m}_1(t)}{\sqrt{m_{10} + 1}m_1(t)},$$

$$M_{02}(t) = \frac{3a_2\gamma_2(t)\dot{m}_0(t)}{2\sqrt{a_2(m_{20} + 1)}m_0(t)}, \qquad M_2(t) = \frac{a_2\gamma_2(t)\dot{m}_2(t)}{\sqrt{a_2(m_{20} + 1)}m_2(t)}.$$

$$\gamma_1(t) = \frac{m_{00} + m_{10}}{m_0(t) + m_1(t)}, \qquad \gamma_2(t) = \frac{m_{00} + m_{20}}{m_0(t) + m_2(t)}.$$
(3.55)

$$K_{1}(t) = \frac{3\gamma_{1}(t)\ddot{\gamma}_{1}(t)}{2\sqrt{1+m_{10}}}, \quad K_{2}(t) = \frac{3a_{2}^{3/2}\gamma_{2}(t)\ddot{\gamma}_{2}(t)}{2\sqrt{1+m_{20}}}, \quad K_{3}(t) = B_{01}(\alpha).$$
(3.56)

$$\Pi_{11}a(t) = \frac{-6\alpha B_{00}(\alpha) - 4B_{01}(\alpha) + 3(2\alpha^{2} + 5)C_{00}(\alpha) - 12\alpha C_{01}(\alpha) - 9C_{02}(\alpha)}{8\sqrt{m_{10} + 1}},$$

$$\Pi_{22}a(t) = \frac{-6\alpha B_{00}(\alpha) - 4\alpha^{2}B_{01}(\alpha) + 15\alpha^{2}C_{00}(\alpha) + 6C_{00}(\alpha) - 12\alpha C_{01}(\alpha) - 9\alpha^{2}C_{02}(\alpha)}{8\alpha^{2}\sqrt{a_{2}(m_{20} + 1)}},$$

$$\Pi_{12}a(t) = \frac{18\alpha B_{00}(\alpha) + 2\alpha B_{02}(\alpha) - 18\alpha^{2}C_{00}(\alpha) - 18C_{00}(\alpha) + 21\alpha C_{01}(\alpha) + 6\alpha^{2}C_{02}(\alpha) + 6C_{02}(\alpha) + 3\alpha C_{03}(\alpha)}{8\alpha^{4}\sqrt{a_{2}(m_{10} + 1)(m_{20} + 1)}}.$$
(3.57)

Коэффициенты Лапласа определятся : $A_{00}, A_{10}, A_{01}, A_{11}$

$$A_{00} = \frac{4}{\pi a_2 \gamma_2 (1+\alpha)} K \left(\frac{4\alpha}{(1+\alpha)^2} \right),$$

$$A_{01} = \frac{2}{\pi a_2 \gamma_2 \alpha (1+\alpha)} \left((1+\alpha_0^2) K \left(\frac{4\alpha}{(1+\alpha)^2} \right) - (1+\alpha)^2 E \left(\frac{4\alpha}{(1+\alpha)^2} \right) \right),$$

$$A_{02} = \frac{2(1+\alpha^2)}{3\alpha} A_{01}(\alpha_0) - \frac{1}{3} A_{00}(\alpha),$$

$$A_{03} = \left(\frac{8(1+\alpha^2)^2}{15\alpha^2} - \frac{3}{5} \right) A_{01}(\alpha) - \frac{4(1+\alpha^2)}{15\alpha} A_{00}(\alpha),$$
(3.58)

$$B_{00} = \frac{\alpha (1 + \alpha^{2})}{(1 - \alpha^{2})^{2}} A_{00} (\alpha) - \frac{2\alpha^{2}}{(1 - \alpha^{2})^{2}} A_{01} (\alpha),$$

$$B_{01} = \frac{2\alpha_{0}^{2}}{(1 - \alpha^{2})^{2}} A_{00} (\alpha) - \frac{\alpha_{0} (1 + \alpha_{0}^{2})}{(1 - \alpha_{0}^{2})^{2}} A_{01} (\alpha),$$

$$B_{02} = \frac{\alpha (1 + \alpha^{2}) A_{00} (\alpha)}{(1 - \alpha_{0}^{2})^{2}} - \frac{2(1 - \alpha^{2} + \alpha^{4}) A_{01} (\alpha)}{(1 - \alpha^{2})^{2}},$$

$$B_{03} = \frac{2(2 - \alpha^{2} + 2\alpha^{4}) A_{00} (\alpha)}{3(1 - \alpha^{2})^{2}} - \frac{(8 - 5\alpha^{2} - 5\alpha^{4} + 8\alpha^{6}) A_{01} (\alpha)}{3\alpha (1 - \alpha^{2})^{2}},$$

$$\begin{split} C_{00} &= \frac{\alpha^{2} \left(3 + 10\alpha^{2} + 3\alpha^{4}\right) A_{00}\left(\alpha\right)}{3\left(1 - \alpha^{2}\right)^{4}} - \frac{8\alpha^{3} \left(1 + \alpha^{2}\right) A_{01}\left(\alpha\right)}{3\left(1 - \alpha^{2}\right)^{4}}, \\ C_{01} &= \frac{8\alpha^{3} \left(1 + \alpha^{2}\right) A_{00}\left(\alpha\right)}{3\left(1 - \alpha^{2}\right)^{4}} - \frac{\alpha^{2} \left(1 + 14\alpha^{2} + \alpha^{4}\right) A_{01}\left(\alpha\right)}{3\left(1 - \alpha^{2}\right)^{4}}. \\ C_{02} &= -\frac{\alpha^{2} \left(1 - 18\alpha^{2} + \alpha^{4}\right) A_{00}\left(\alpha\right)}{3\left(1 - \alpha^{2}\right)^{4}} + \frac{2\alpha \left(1 - 5\alpha^{2} - 5\alpha^{4} + \alpha^{6}\right) A_{01}\left(\alpha\right)}{3\left(1 - \alpha^{2}\right)^{4}}, \\ C_{03} &= -\frac{4\alpha \left(1 - 3\alpha^{2} - 3\alpha^{4} + \alpha^{6}\right) A_{00}\left(\alpha\right)}{3\left(1 - \alpha^{2}\right)^{4}} + \frac{\left(8 - 25\alpha^{2} + 18\alpha^{4} - 25\alpha^{6} + 8\alpha^{8}\right) A_{01}\left(\alpha\right)}{3\left(1 - \alpha^{2}\right)^{4}}. \end{split}$$

Решения уравнений (3.47) будем искать в различных случаях: постоянные массы, массы изменяющиеся изотропно, и переменное массы, изменяющиеся анизотропно. При визуализации результатов используем следующие соотношения между переменными Пуанкаре и орбитальными параметрами:

$$\begin{split} \Omega_{1} &= -\arg \frac{q_{1}}{p_{1}}, \quad \Omega_{2} = -\arg \frac{q_{2}}{p_{2}}, \\ \omega_{1} &= \arg \frac{q_{1}}{p_{1}} - \arg \frac{\eta_{1}}{\xi_{1}}, \quad \omega_{2} = \arg \frac{q_{2}}{p_{2}} - \arg \frac{\eta_{2}}{\xi_{2}}, \\ e_{1} &= \sqrt{\frac{\xi_{1}^{2} + \eta_{1}^{2}}{2\Lambda_{1}} \left(2 - \frac{\xi_{1}^{2} + \eta_{1}^{2}}{2\Lambda_{1}}\right)}, \quad e_{2} = \sqrt{\frac{\xi_{2}^{2} + \eta_{2}^{2}}{2\Lambda_{2}} \left(2 - \frac{\xi_{2}^{2} + \eta_{2}^{2}}{2\Lambda_{2}}\right)}, \end{split}$$
(3.59)
$$\cos i_{1} &= 1 - \frac{p_{1}^{2} + q_{1}^{2}}{2\Lambda_{1} - \xi_{1}^{2} - \eta_{1}^{2}}, \quad \cos i_{2} = 1 - \frac{p_{2}^{2} + q_{2}^{2}}{2\Lambda_{2} - \xi_{2}^{2} - \eta_{2}^{2}}. \end{split}$$

На рисунках 3.1-3.4 представлены результаты численных расчетов аналогов орбитальных параметров планет экзопланетной системы Глизе GJ180: GJ 180 b, GJ 180 c по эволюционным уравнениям в аналогах второй системы переменных Пуанкаре на интервале времени 5000 земных лет (100000 орбитальных годах внутренней планеты).

Расчеты выполнены для случая постоянной массы системы, при изотропном изменении массы и анизотропном изменении массы, когда центральная звезда P_0 и планеты P_1 и P_2 теряют массу в различных темпах и реактивные силы не равны нулю. Скорости вылета частиц были выбраны произвольно, в плоскости орбиты - $V_{1r} = 0$, $V_{2r} = 0$, $V_{0x} = 0.05$, $V_{0y} = 0$, $V_{0z} = 0$:

Рисунок 3.1 - Эволюция аналогов эксцентриситетов P₁ и P₂ на интервале времени 5000 лет (1- постоянная масса; 2- изотропное изменение массы, 3- анизотропное изменение массы)

Рисунок 3.1 показывает эволюцию аналогов эксцентриситетов P_1 и P_2 на интервале времени 5000 лет при начальных значениях эксцентриситетов для $P_1=0,11$, а для $P_2=0,09$ (ось Y) и скорости вылета частиц $V_{0x}=0.05$.

Расчеты показывают, что в случае анизотропии аналоги эксцентриситетов изменятся от начального условия для объектов до $P_1=0,35$ и $P_2=0,4$.

Рисунок 3.2- Эволюция аналогов наклонения P₁ и P₂ на интервале времени 5000 лет (1- постоянная масса; 2- изотропное изменение массы, 3анизотропное изменение массы)

На рисунке 3.2 показана эволюция аналогов наклонения P_1 и P_2 при тех же условиях на интервале времени 5000 лет при начальных значениях аналогов наклонения для $P_1=0,5^0$, а для $P_2=1^0$.

Поскольку реактивные силы действуют в плоскости орбит, анизотропия изменения масс практически не влияет на зависимость наклонений орбит от времени.

Рисунок 3.3 - Эволюция аналогов долготы восходящего узла GJ180b и GJ180c на интервале времени 5000 лет (1- постоянная масса; 2- изотропное изменение массы, 3- анизотропное изменение массы)

Рисунок 3.3 показывает, что при изменении реактивных сил в плоскости орбит, анизотропия изменения масс практически не влияет на зависимость аналогов долготы восходящего узла орбит от времени.

Рисунок 3.4 - Эволюция аналогов долготы перицентра GJ180b и GJ180c на интервале времени 5000 лет (1- постоянная масса; 2- изотропное изменение массы, 3- анизотропное изменение массы)

Анализ численных расчетов (рисунок 3.4) показывает, что аналоги долготы перицентра в случае переменных масс показывают более медленное изменение по сравнению со случаем постоянных масс. Причем анизотропное изменение масс приводит лишь к небольшим отклонениям долготы перицентра от соответствующих зависимостей при изотропном изменении масс т.е. в аналогах второй системы переменных Пуанкаре при значительном уменьшении массы центрального тела возрастание функции прекращается, и наблюдаются затухающие колебания. Такой же эффект наблюдается у функции $\pi_2 = \omega_2 + \Omega_2$.

Вертикальные линии на рисунках 3.4 - это не части графика, а только асимптоты. Арктангенс определен только на отрезке от $-\pi/2$ до $\pi/2$ и потому растущая функция $\omega_1 + \Omega_1$ изображена в виде ломаной.

Поскольку переменные Пуанкаре практически не изменяются при таком выборе скорости вылета частиц, то орбитальные параметры также не изменяются. Например, эксцентриситет в изотропном случае и не изотропном случае.

На основе результатов численных расчетов, показанных на рисунках 3.1-3.4, по эволюционным уравнениям в аналогах второй системы переменных Пуанкаре с изменением скорости вылета частиц в плоскости орбиты $(V_{1r} = 0, V_{2r} = 0, V_{0x} = 0.05, V_{0y} = 0, V_{0z} = 0)$, видно, что на интервале времени 5000 земных лет орбитальные параметры практически не изменяются. Например, эксцентриситет в изотропном случае и неизотропном случае.

На рисунках 3.5-3.8 представлены результаты численных расчетов аналогов орбитальных параметров планет экзопланетной системы GJ180: GJ 180 b, GJ 180 c по эволюционным уравнениям в аналогах второй системы переменных Пуанкаре на интервале времени 5000 земных лет, когда скорости вылета частиц были выбраны произвольно, но перпендикулярно плоскости орбиты - $V_{1r} = 0$, $V_{2r} = 0$, $V_{0x} = 0$, $V_{0y} = 0$, $V_{0z} = 1/10$.

Начальные значения параметров орбит остаются прежними:

– начальные значения аналогов эксцентриситетов для $P_1=0,11$, а для $P_2=0,09$.

- начальные значения аналогов наклонения для $P_1=0,5^0$, а для $P_2=1^0$.

Рисунок 3.5 - Эволюция аналогов эксцентриситетов GJ180b и GJ180c на интервале времени 5000 лет (1- постоянная масса; 2- изотропное изменение массы, 3- анизотропное изменение массы)

Расчеты эволюции аналогов эксцентриситетов P₁ и P₂ на интервале времени 5000 лет (рисунок 3.5) показывают, что в случае анизотропии аналоги эксцентриситетов изменяются от начального условия для объектов и становятся

- P₁=0,14 и P₂=0,15, т.е. в этом случае эксцентриситет становится более вытянутым.

Рисунок 3.6 - Эволюция аналогов наклонения GJ180b и GJ180c на интервале времени 5000 лет (1- постоянная масса; 2- изотропное изменение массы, 3- анизотропное изменение массы)

Расчеты показывают (рисунок 3.6), что аналоги наклонения на заданном интервале времени в 5000 лет изменяются по сравнению с начальными условиями и становятся для первого объекта $P_1=1.7^0$, для второго - $P_2=2,3^0$ т.е. в случае анизотропного изменения масс, когда меняется скорость вылетания частиц перпендикулярно плоскости орбиты, наличие реактивной силы приводит к большим эффектам.

Рисунок 3.7 - Эволюция аналогов долготы восходящего узла GJ180b и GJ180c на интервале времени 5000 лет (1- постоянная масса; 2- изотропное изменение массы, 3- анизотропное изменение массы)

На рисунках 3.7 - Эволюция аналогов долготы восходящего узла P₁ и P₂ на интервале времени 5000 лет. Относительная скорость отделяющихся частиц по оси Z равна 1/10. Видим, что в этом случае наличие реактивной силы приводит к изменениям аналогов долготы восходящего узла, при изменении скорости вылетания частиц по Vz можем наблюдать изменение, и это естественно, так как плоскость орбиты поворачивается.

Рисунок 3.8 - Эволюция аналогов долготы перицентра GJ180b и GJ180c на интервале времени 5000 лет (1- постоянная масса; 2- изотропное изменение массы, 3- анизотропное изменение массы)

Результаты расчетов эволюции аналогов долготы перицентра P₁ и P₂ на интервале времени 5000 лет (рисунок 3.8) показывают, что при значительном уменьшении массы центрального тела возрастание функции $\pi_1 = \omega_1 + \Omega_1$ прекращается, и наблюдаются затухающие колебания. Такой же эффект наблюдается у функции $\pi_2 = \omega_2 + \Omega_2$

3.6 Основные результаты, полученные в разделе 3

На основе результатов численных расчетов по эволюционным уравнениям в аналогах второй системы переменных Пуанкаре, можно сделать вывод, что при изменении скорости вылета частиц в плоскости орбиты на интервале времени 5000 земных лет орбитальные параметры практически не изменяются по сравнению со случаем изотропного изменения массы, хотя зависимость массы от времени приводит к заметным изменениям орбитальных параметров по сравнению со случаем постоянных масс.

При изменении скорости вылета частиц перпендикулярно плоскости орбиты реактивная сила оказывает влияние на некоторые орбитальные параметры планет, например, на аналоги эксцентриситета и наклонения, которые приводят к более вытянутым орбитам.

В аналогах второй системы элементов Пуанкаре уравнения движения нужно несколько раз преобразовывать, из-за этого происходит потеря точности.

Поэтому переходим к аналогам кеплеровских элементов, где удобно использовать уравнения возмущенного движения в форме Лагранжа.

4 УРАВНЕНИЯ ВОЗМУЩЕННОГО ДВИЖЕНИЯ В ОСКУЛИРУЮЩИХ ЭЛЕМЕНТАХ В ФОРМЕ ЛАГРАНЖА

В настоящей главе мы изучаем общий случай двухпланетной системы, когда тела обладают сферически-симметричным распределением масс, которые изменяются анизотропно с разными скоростями, что приводит к возникновению реактивных сил.

4.1 Уравнения возмущенного движения двух планет в относительной системе координат

Уравнения возмущенного движения двух планет в относительной системе координат напишем в виде [24,с.237-240, 77-78]:

$$\ddot{\vec{r}}_{1} + f(m_{0} + m_{1})\frac{\vec{r}_{1}}{r_{1}^{3}} - \frac{\ddot{\gamma}_{1}}{\gamma_{1}}\vec{r}_{1} = grad_{\vec{r}_{1}}\tilde{W}_{1}, \qquad (4.1)$$

$$\tilde{W}_{1} = \tilde{U}_{1} + F_{1x}x_{1} + F_{1y}y_{1} + F_{1z}z_{1} - \frac{\ddot{\gamma}_{1}}{2\gamma_{1}}r_{1}^{2}, \quad j = 1, 2, \qquad (4.2)$$

$$\tilde{U}_1 = \mu_2 \left(\frac{1}{r_{12}} - \frac{\vec{r}_1 \cdot \vec{r}_2}{r_2^3} \right), \tag{4.3}$$

$$r_{21} = \left| \vec{r_1} - \vec{r_2} \right| = r_{12} \quad \gamma_1 = \frac{m_0(t_0) + m_1(t_0)}{m_0(t) + m_1(t)} = \gamma_1(t), \quad \mu_1 = fm_1 \tag{4.4}$$

$$\ddot{\vec{r}}_{2} + f\left(m_{0} + m_{2}\right)\frac{\vec{r}_{2}}{r_{2}^{3}} - \frac{\ddot{\gamma}_{2}}{\gamma_{2}}\vec{r}_{2} = grad_{\vec{r}_{2}}\tilde{W}_{2}, \qquad (4.5)$$

$$\tilde{W}_{2} = \tilde{U}_{2} + F_{2x}x_{2} + F_{2y}y_{2} + F_{2z}z_{2} - \frac{\ddot{\gamma}_{2}}{2\gamma_{2}}r_{2}^{2}$$
(4.6)

$$\tilde{U}_{2} = \mu_{1} \left(\frac{1}{r_{21}} - \frac{\vec{r}_{1} \cdot \vec{r}_{2}}{r_{1}^{3}} \right), \tag{4.7}$$

$$r_{21} = \left| \vec{r}_1 - \vec{r}_2 \right| = r_{12} \quad \gamma_2 = \frac{m_0(t_0) + m_2(t_0)}{m_0(t) + m_2(t)} = \gamma_2(t), \quad \mu_2 = fm_2$$
(4.8)

где \tilde{U}_{j} — силовые функции ньютоновского взаимодействия тел, $\vec{F}_{j} = \vec{F}_{j} \left(F_{jx}(t), F_{jy}(t), F_{jz}(t) \right) = \vec{F}_{j}(t)$ — реактивные силы, которые считаются известными функциями времени.

4.2 Уравнения возмущенного движения двухпланетной задачи трех тел при наличии реактивных сил

Выразим все слагаемые возмущающих функций $\tilde{W_1}$, $\tilde{W_2}$ через орбитальные элементы невозмущенного движения.

Из них наиболее сложным является разложение в ряд главной части силовой функции ньютоновских взаимодействия тел \tilde{U}_1 , \tilde{U}_2 . Следуя по классической схеме [24, с.237-239], целесообразно выделить главную и косвенную часть возмущающих функций:

$$\tilde{U}_{1} = \frac{\mu_{2}}{\gamma_{2}a_{2}} U_{127} - \frac{\mu_{2}}{\gamma_{2}a_{2}} \alpha U_{1\kappa_{OCG}}, \qquad (4.9)$$

$$\tilde{U}_{1_{27}} = \frac{\gamma_2 a_2}{r_{12}} = \gamma_2 a_2 \left(\frac{1}{r_{12}}\right), \qquad \tilde{U}_{1_{kocs}} = \left(\frac{r_1}{\gamma_1 a_1}\right) \left(\frac{\gamma_2 a_2}{r_2}\right)^2 \cos \psi , \qquad (4.10)$$

$$\alpha = \alpha \left(t \right) = \frac{\gamma_1 a_1}{\gamma_2 a_2} < 1 , \qquad (4.11)$$

$$\tilde{U}_{2} = \frac{\mu_{1}}{\gamma_{2}a_{2}}U_{2zz} - \frac{\mu_{1}}{\gamma_{2}a_{2}}\frac{1}{\alpha^{2}}U_{2xocs}, \qquad (4.12)$$

$$\tilde{U}_{2z_{7}} = \frac{\gamma_{2}a_{2}}{r_{21}} = \gamma_{2}a_{2}\left(\frac{1}{r_{21}}\right), \quad \tilde{U}_{2\kappaoce} = \left(\frac{r_{2}}{\gamma_{2}a_{2}}\right)\left(\frac{\gamma_{1}a_{1}}{r_{1}}\right)^{2}\cos\psi.$$
(4.13)

Выражения в правых частях этих уравнений разлагаются в ряд по оскулирующим элементам апериодического движения по квазиконическому сечению.

Разложения возмущающих функций, кроме \tilde{U}_{jen} , не представляют особой сложности, так как аналитические выражения координат и квадрата модуля радиуса-вектора простые [24, с.246, 78, с.242-79]

$$\begin{aligned} x_{j} &= \gamma_{j} \rho_{j} \Big[\cos u_{j} \cdot \cos \Omega_{j} - \sin u_{j} \cdot \sin \Omega_{j} \cdot \cos i_{j} \Big], \\ y_{j} &= \gamma_{j} \rho_{j} \Big[\cos u_{j} \cdot \sin \Omega_{j} + \sin u_{j} \cdot \cos \Omega_{j} \cdot \cos i_{j} \Big], \\ z_{j} &= \gamma_{j} \rho_{j} \Big[\sin u_{j} \cdot \sin i_{j} \Big], \quad u_{j} = \omega_{j} + \theta_{j}, \end{aligned}$$

$$(4.14)$$

$$\rho = \frac{p}{1 + e \cos \vartheta}, \quad p = a \left(1 - e^2 \right) \tag{4.15}$$

p - параметр орбит

$$r_{j}^{2} = x_{j}^{2} + y_{j}^{2} + z_{j}^{2} = \gamma_{j}^{2} \rho_{j}^{2}, \qquad (4.16)$$

где, u_j - аргумент широты, ω_j - аргумент перицентра, θ_j - истинная аномалия, i_j - наклонение орбиты, Ω_j - долгота восходящего узла.

Разложения в ряд правой части (4.14), (4.16) известны [44, с.38-41]. Также известны разложения величин:

$$(r_j / \gamma_j a_j) = (\rho_j / a_j), \qquad (\gamma_j a_j / r_j)^2 = (a_j / \rho_j)^2$$

$$(4.17)$$

в косвенной части возмущающей функции (4.10), (4.13).

4.3 Аналитические разложения возмущающей функции по оскулирующим элементам по квазиконическому сечению

4.3.1 Разложение главной части возмущающей функции

Как было отмечено выше, основная трудность заключается в разложении главной части возмущающих функций $\tilde{U}_{1_{27}}$, $\tilde{U}_{2_{27}}$. Из $\vec{r}_{12} = \vec{r}_2 - \vec{r}_1$ следует:

$$r_{12}^{2} = r_{2}^{2} - 2\vec{r_{1}}\vec{r_{2}} + r_{1}^{2} = r_{2}^{2} - 2r_{1}r_{2}\cos\psi + r_{1}^{2}$$
(4.18)

где *ψ* - угол между двумя радиус-векторами.

Введем обозначения:

$$\Delta^{2} = r_{12}^{2} = r_{21}^{2} = r_{2}^{2} - 2r_{1}r_{2}\cos\psi + r_{1}^{2} = \left[\Delta_{0}^{2}\right] + \left[-2r_{1}r_{2}\tilde{\Psi}\right]$$
(4.19)

$$\Delta_0^2 = r_1^2 + r_2^2 - 2r_1r_2\cos(v_1 - v_2), \qquad (4.20)$$

$$\tilde{\Psi} = \cos\psi - \cos(v_1 - v_2), \qquad (4.21)$$

где $v_j = \theta_j + \pi_j$ - истинные долготы, $\pi_j = \Omega_j + \omega_j$, j = 1, 2 - долгота перицентра планет.

Из (4.1), учитывая (4.19)-(4.21), получим:

$$\Delta^{2} = \Delta_{0}^{2} + \left(-2r_{1}r_{2}\tilde{\Psi}\right) = \Delta_{0}^{2} \left[1 - \frac{2r_{1}r_{2}}{\Delta_{0}^{2}}\tilde{\Psi}\right]$$
(4.22)

Из равенства (4.22) следует:

$$\frac{1}{\Delta} = \frac{1}{\Delta_0} \cdot \frac{1}{\sqrt{1 - \frac{2r_1 r_2}{\Delta_0^2} \tilde{\Psi}}}$$
(4.23)

Используя известную формулу

$$(1-x)^{-1/2} = 1 + \frac{1}{2}x + \frac{3}{8}x^2 + \frac{5}{16}x^3 + \frac{35}{128}x^4 + \dots$$

разложим в ряд второй множитель в правой части формулы (4.23). В результате получим:

$$\frac{1}{\Delta} = \frac{1}{\Delta_0} + r_1 r_2 \tilde{\Psi} \frac{1}{\Delta_0^3} + \frac{3}{2} \left(r_1 r_2 \tilde{\Psi} \right)^2 \frac{1}{\Delta_0^5} + \frac{5}{2} \left(r_1 r_2 \tilde{\Psi} \right)^3 \frac{1}{\Delta_0^7} + \dots$$
(4.24)

Формула (4.24) может быть записана в общем виде:

$$\frac{1}{\Delta} = \frac{1}{\Delta_0} + r_1 r_2 \tilde{\Psi} \frac{1}{\Delta_0^3} + \frac{3}{2} \left(r_1 r_2 \tilde{\Psi} \right)^2 \frac{1}{\Delta_0^5} + \frac{5}{2} \left(r_1 r_2 \tilde{\Psi} \right)^3 \frac{1}{\Delta_0^7} + \dots = \sum_{i=0}^{\infty} \frac{(2i)!}{(i!)^2} \cdot \left(\frac{1}{2} r_1 r_2 \tilde{\Psi} \right)^i \frac{1}{\Delta_0^{2i+1}}.$$
(4.25)

Чтобы прописать правую часть уравнения (4.27) через орбитальные элементы двух планет, необходимо выразить величины r_1 , r_2 , $\tilde{\Psi}$ и $\Delta_0^{-(2i+1)}$ через орбитальные элементы.

Как было отмечено выше, выражения r_1 , r_2 через орбитальные элементы величин достаточно простые и известные [24, с.246-249, 73]

$$r_{1} = \frac{\gamma_{1}a_{1}\rho_{1}}{a_{1}} = \gamma_{1}a_{1}\left(\frac{\rho_{1}}{a_{1}}\right) = \gamma_{1}a_{1}\left(1 + \frac{e_{1}^{2}}{2} + e_{1}\sum_{k=1}^{\infty}\frac{J_{k+1}(ke_{1}) - J_{k-1}(ke_{1})}{k}\cos kM_{1}\right)$$

$$r_{2} = \frac{\gamma_{2}a_{2}\rho_{2}}{a_{2}} = \gamma_{2}a_{2}\left(\frac{\rho_{2}}{a_{2}}\right) = \gamma_{2}a_{2}\left(1 + \frac{e_{2}^{2}}{2} + e_{2}\sum_{k=1}^{\infty}\frac{J_{k+1}(ke_{2}) - J_{k-1}(ke_{2})}{k}\cos kM_{2}\right)$$
(4.26)

где $J_k(ke)$ - является функциями Бесселя [71, с.233].

4.3.1.1 Разложение величины $\tilde{\Psi} = \cos \psi - \cos (v_1 - v_2)$

Разложение величины $\cos\psi$

Для первой слагаемой уравнения (4.21), согласно определению скалярного произведения, имеем:

$$\cos \psi = \frac{x_{1}x_{2} + y_{1}y_{2} + z_{1}z_{2}}{r_{1}r_{2}} = \frac{x_{1}}{r_{1}} \cdot \frac{x_{2}}{r_{2}} + \frac{y_{1}}{r_{1}} \cdot \frac{y_{2}}{r_{2}} + \frac{z_{1}}{r_{1}} \cdot \frac{z_{2}}{r_{2}} = \left(\frac{x_{1}}{\gamma_{1}\rho_{1}}\right) \cdot \left(\frac{x_{2}}{\gamma_{2}\rho_{2}}\right) + \left(\frac{y_{1}}{\gamma_{1}\rho_{1}}\right) \cdot \left(\frac{y_{2}}{\gamma_{2}\rho_{2}}\right) + \left(\frac{z_{1}}{\gamma_{1}\rho_{1}}\right) \cdot \left(\frac{z_{2}}{\gamma_{2}\rho_{2}}\right)$$
(4.27)

Соответственно, из формулы (4.14) следует, что координаты двух планет могут быть записаны в виде:

$$\left(\frac{x_{1}}{\gamma_{1}\rho_{1}}\right)\cdot\left(\frac{x_{2}}{\gamma_{2}\rho_{2}}\right) = \left[\left\{\cos u_{1}\right\}\cos\Omega_{1} - \left\{\sin u_{1}\right\}\sin\Omega_{1}\cos i_{1}\right]\cdot\left[\left\{\cos u_{2}\right\}\cos\Omega_{2} - \left\{\sin u_{2}\right\}\sin\Omega_{2}\cos i_{2}\right]\right] \\
\left(\frac{y_{1}}{\gamma_{1}\rho_{1}}\right)\cdot\left(\frac{y_{2}}{\gamma_{2}\rho_{2}}\right) = \left[\left\{\cos u_{1}\right\}\sin\Omega_{1} + \left\{\sin u_{1}\right\}\cos\Omega_{1}\cos i_{1}\right]\cdot\left[\left\{\cos u_{2}\right\}\sin\Omega_{2} + \left\{\sin u_{2}\right\}\cos\Omega_{2}\cos i_{2}\right]\right] \\
\left(\frac{z_{1}}{\gamma_{1}\rho_{1}}\right)\cdot\left(\frac{z_{2}}{\gamma_{2}\rho_{2}}\right) = \left[\left\{\sin u_{1}\right\}\sin i_{1}\right]\cdot\left[\left\{\sin u_{2}\right\}\sin i_{2}\right]$$
(4.28)

$$\cos \psi = \left[\left(\left\{ \cos \theta_1 \right\} \cos \omega_1 - \left\{ \sin \theta_1 \right\} \sin \omega_1 \right) \cos \Omega_1 - \left(\left\{ \sin \theta_1 \right\} \cos \omega_1 + \left\{ \cos \theta_1 \right\} \sin \omega_1 \right) \sin \Omega_1 \cos i_1 \right] \times \right] \right]$$

$$\left[\left(\left\{ \cos \theta_2 \right\} \cos \omega_2 - \left\{ \sin \theta_2 \right\} \sin \omega_2 \right) \cos \Omega_2 - \left(\left\{ \sin \theta_2 \right\} \cos \omega_2 + \left\{ \cos \theta_2 \right\} \sin \omega_2 \right) \sin \Omega_2 \cos i_2 \right] + \right] \right]$$

$$\left[\left(\left\{ \cos \theta_1 \right\} \cos \omega_1 - \left\{ \sin \theta_1 \right\} \sin \omega_1 \right) \sin \Omega_1 + \left(\left\{ \sin \theta_1 \right\} \cos \omega_1 + \left\{ \cos \theta_1 \right\} \sin \omega_1 \right) \cos \Omega_1 \cos i_1 \right] \times \right] \right]$$

$$\times \left[\left(\left\{ \cos \theta_2 \right\} \cos \omega_2 - \left\{ \sin \theta_2 \right\} \sin \omega_2 \right) \sin \Omega_2 + \left(\left\{ \sin \theta_2 \right\} \cos \omega_2 + \left\{ \cos \theta_2 \right\} \sin \omega_2 \right) \cos \Omega_2 \cos i_2 \right] + \right] \right]$$

$$\left[\left(\left\{ \sin \theta_1 \right\} \cos \omega_1 + \left\{ \cos \theta_1 \right\} \sin \omega_1 \right\} \sin i_1 \right] \cdot \left[\left(\left\{ \sin \theta_2 \right\} \cos \omega_2 + \left\{ \cos \theta_2 \right\} \sin \omega_2 \right) \sin i_2 \right] \right]$$

$$\left[\left(\left\{ \sin \theta_1 \right\} \cos \omega_1 + \left\{ \cos \theta_1 \right\} \sin \omega_1 \right\} \sin i_1 \right] \cdot \left[\left(\left\{ \sin \theta_2 \right\} \cos \omega_2 + \left\{ \cos \theta_2 \right\} \sin \omega_2 \right) \sin i_2 \right] \right]$$

$$\left\{\cos u_{j}\right\} = \cos\left(\theta_{j} + \omega_{j}\right) = \left\{\cos \theta_{j}\right\} \cos \omega_{j} - \left\{\sin \theta_{j}\right\} \sin \omega_{j}$$

$$\left\{\sin u_{j}\right\} = \sin\left(\theta_{j} + \omega_{j}\right) = \left\{\sin \theta_{j}\right\} \cos \omega_{j} + \left\{\cos \theta_{j}\right\} \sin \omega_{j}$$

(4.30)

$$\left\{\cos\theta_{j}\right\} = -e + \frac{2\left(1-e^{2}\right)}{e}\sum_{k=1}^{\infty}J_{k}\left(ke\right)\cos kM$$
(4.31)

$$\left\{\sin\theta_{j}\right\} = \sqrt{1-e^{2}}\sum_{k=1}^{\infty} \left[J_{k-1}\left(ke\right) - J_{k+1}\left(ke\right)\right]\sin kM \qquad (4.32)$$

$$\sin\theta_{j} \approx \sin M_{j} + e_{j} \sin 2M_{j} + e_{j}^{2} \left(\frac{9}{8} \sin 3M_{j} - \frac{7}{8} \sin M_{j}\right) ,$$

$$\cos\theta_{j} \approx \cos M_{j} + e_{j} \left(\cos 2M_{j} - 1\right) + e_{j}^{2} \left(\frac{9}{8} \cos 3M_{j} - \frac{9}{8} \cos M_{j}\right)$$

$$(4.33)$$

Выразим среднюю аномалию M_i в формулах (4.33) через среднюю долготу λ_i

$$M_{j} = \lambda_{j} - (\Omega_{j} + \omega_{j}) = \lambda_{j} - \pi_{j}, \qquad \pi_{j} = \Omega_{j} + \omega_{j}, \qquad j = 1, 2, \qquad (4.34)$$

Используя уравнения (4.27), (4.28), (4.33), (4.34) определяем выражение $\cos \psi$ через орбитальные элементы. Выражения в фигурных скобках разлагаются в бесконечный ряд по степеням эксцентриситета, которые известны [24, с.251, 78, с.245-246].

Разложение величины $\cos(v_1 - v_2)$ В уравнении (4.21) разлагаем в ряд второе слагаемое:

$$\cos(v_1 - v_2) = \cos v_1 \cos v_1 + \sin v_1 \sin v_2 =$$

= $\cos v_1 \cos v_2 + \sin v_1 \sin v_2$ (4.35)

$$\cos v_{j} = \cos \left(u_{j} + \Omega_{j} \right) = \left\{ \cos u_{j} \right\} \cos \Omega_{j} - \left\{ \sin u_{j} \right\} \sin \Omega_{j}$$

$$\sin v_{j} = \sin \left(u_{j} + \Omega_{j} \right) = \left\{ \sin u_{j} \right\} \cos \Omega_{j} + \left\{ \cos u_{j} \right\} \sin \Omega_{j}$$

$$j = 1, 2 \qquad (4.36)$$

$$\begin{aligned} \cos(v_{1}-v_{2}) &= \cos(u_{1}+\Omega_{1})\cos(u_{2}+\Omega_{2}) + \sin(u_{1}+\Omega_{1})\sin(u_{2}+\Omega_{2}) = \\ &= \left[\left\{\cos u_{1}\right\}\cos\Omega_{1} - \left\{\sin u_{1}\right\}\sin\Omega_{1}\right]\left[\left\{\cos u_{2}\right\}\cos\Omega_{2} - \left\{\sin u_{2}\right\}\sin\Omega_{2}\right] + \\ &\left[\left\{\sin u_{1}\right\}\cos\Omega_{1} + \left\{\cos u_{1}\right\}\sin\Omega_{1}\right]\left[\left\{\sin u_{2}\right\}\cos\Omega_{2} + \left\{\cos u_{2}\right\}\sin\Omega_{2}\right] = \\ &= \left[\left(\left\{\cos\theta_{1}\right\}\cos\theta_{1} - \left\{\sin\theta_{1}\right\}\sin\theta_{1}\right)\cos\Omega_{1} - \left(\left\{\sin\theta_{1}\right\}\cos\theta_{1} + \left\{\cos\theta_{1}\right\}\sin\theta_{1}\right)\sin\Omega_{1}\right] \times \\ &\times \left[\left(\left\{\cos\theta_{2}\right\}\cos\theta_{2} - \left\{\sin\theta_{2}\right\}\sin\theta_{2}\right)\cos\Omega_{2} - \left(\left\{\sin\theta_{2}\right\}\cos\theta_{2} + \left\{\cos\theta_{2}\right\}\sin\theta_{2}\right)\sin\Omega_{2}\right] + \\ &+ \left[\left(\left\{\sin\theta_{1}\right\}\cos\theta_{1} + \left\{\cos\theta_{1}\right\}\sin\theta_{1}\right)\cos\Omega_{1} + \left(\left\{\cos\theta_{1}\right\}\cos\theta_{1} - \left\{\sin\theta_{1}\right\}\sin\theta_{1}\right)\sin\Omega_{1}\right] \times \\ &\times \left[\left(\left\{\sin\theta_{2}\right\}\cos\theta_{2} + \left\{\cos\theta_{2}\right\}\sin\theta_{2}\right)\cos\Omega_{2} + \left(\left\{\cos\theta_{2}\right\}\cos\theta_{2} - \left\{\sin\theta_{2}\right\}\sin\theta_{2}\right)\sin\Omega_{2}\right] \end{aligned}$$

$$(4.37)$$

Выражения в фигурных скобках в формуле (4.37) согласно формулам (4.31), (4.32) выражаются через орбитальные элементы в виде бесконечного ряда.

Использование формул (4.33) и (4.34) позволит получить аналитическое выражение $\tilde{\Psi}$ через орбитальные элементы двух планет [77, с.138].

$$\begin{split} \tilde{\Psi} &= \cos\psi - \cos(\nu_1 - \nu_2) = \\ &= \left[\left(\left\{ \cos\theta_1 \right\} \cos\omega_1 - \left\{ \sin\theta_1 \right\} \sin\omega_1 \right) \cos\Omega_1 - \left(\left\{ \sin\theta_1 \right\} \cos\omega_1 + \left\{ \cos\theta_1 \right\} \sin\omega_1 \right) \sin\Omega_1 \cos\nu_i \right] \times \\ \left[\left(\left\{ \cos\theta_2 \right\} \cos\omega_2 - \left\{ \sin\theta_2 \right\} \sin\omega_2 \right) \cos\Omega_2 - \left(\left\{ \sin\theta_2 \right\} \cos\omega_2 + \left\{ \cos\theta_2 \right\} \sin\omega_2 \right) \sin\Omega_2 \cos\nu_i \right] + \\ &+ \left[\left(\left\{ \cos\theta_1 \right\} \cos\omega_1 - \left\{ \sin\theta_1 \right\} \sin\omega_1 \right) \sin\Omega_1 + \left(\left\{ \sin\theta_1 \right\} \cos\omega_1 + \left\{ \cos\theta_1 \right\} \sin\omega_1 \right) \cos\Omega_1 \cos\nu_i \right] \right] \times \\ &\times \left[\left(\left\{ \cos\theta_2 \right\} \cos\omega_2 - \left\{ \sin\theta_2 \right\} \sin\omega_2 \right) \sin\Omega_2 + \left(\left\{ \sin\theta_2 \right\} \cos\omega_2 + \left\{ \cos\theta_2 \right\} \sin\omega_2 \right) \cos\Omega_2 \cos\nu_i \right] + \\ &+ \left[\left(\left\{ \sin\theta_1 \right\} \cos\omega_1 + \left\{ \cos\theta_1 \right\} \sin\omega_1 \right) \sin\nu_i \right] \right] \cdot \left[\left(\left\{ \sin\theta_2 \right\} \cos\omega_2 + \left\{ \cos\theta_2 \right\} \sin\omega_2 \right) \sin\nu_i \right] \right] - \\ &- \left(\left[\left(\left\{ \cos\theta_1 \right\} \cos\omega_1 - \left\{ \sin\theta_1 \right\} \sin\omega_1 \right) \cos\Omega_1 - \left(\left\{ \sin\theta_1 \right\} \cos\omega_1 + \left\{ \cos\theta_1 \right\} \sin\omega_1 \right) \sin\Omega_1 \right] \right] \times \\ &\times \left[\left(\left\{ \cos\theta_2 \right\} \cos\omega_2 - \left\{ \sin\theta_2 \right\} \sin\omega_2 \right) \cos\Omega_2 - \left(\left\{ \sin\theta_2 \right\} \cos\omega_2 + \left\{ \cos\theta_2 \right\} \sin\omega_2 \right) \sin\Omega_2 \right] + \\ &+ \left[\left(\left\{ \sin\theta_1 \right\} \cos\omega_1 - \left\{ \sin\theta_1 \right\} \sin\omega_1 \right) \cos\Omega_1 - \left(\left\{ \sin\theta_2 \right\} \cos\omega_2 + \left\{ \cos\theta_2 \right\} \sin\omega_2 \right) \sin\Omega_2 \right] + \\ &+ \left[\left(\left\{ \sin\theta_1 \right\} \cos\omega_1 - \left\{ \sin\theta_2 \right\} \sin\omega_2 \right) \cos\Omega_2 - \left(\left\{ \sin\theta_2 \right\} \cos\omega_2 + \left\{ \cos\theta_2 \right\} \sin\omega_2 \right) \sin\Omega_2 \right] + \\ &+ \left[\left(\left\{ \sin\theta_1 \right\} \cos\omega_1 + \left\{ \cos\theta_1 \right\} \sin\omega_1 \right) \cos\Omega_1 + \left(\left\{ \cos\theta_1 \right\} \cos\omega_2 - \left\{ \sin\theta_2 \right\} \sin\omega_2 \right) \sin\Omega_2 \right] \right] \times \\ &\times \left[\left(\left\{ \sin\theta_2 \right\} \cos\omega_2 - \left\{ \sin\theta_2 \right\} \sin\omega_2 \right) \cos\Omega_2 + \left\{ \left\{ \cos\theta_2 \right\} \cos\omega_2 - \left\{ \sin\theta_2 \right\} \sin\omega_2 \right\} \sin\Omega_2 \right] \right] \right] \\ &+ \left[\left(\left\{ \sin\theta_2 \right\} \cos\omega_2 + \left\{ \cos\theta_2 \right\} \sin\omega_2 \right) \cos\Omega_2 + \left(\left\{ \cos\theta_2 \right\} \cos\omega_2 - \left\{ \sin\theta_2 \right\} \sin\omega_2 \right) \sin\Omega_2 \right] \right] \right] \\ &+ \left[\left(\left\{ \sin\theta_2 \right\} \cos\omega_2 + \left\{ \cos\theta_2 \right\} \sin\omega_2 \right) \cos\Omega_2 + \left(\left\{ \cos\theta_2 \right\} \cos\omega_2 - \left\{ \sin\theta_2 \right\} \sin\omega_2 \right) \sin\Omega_2 \right] \right] \right] \\ &+ \left[\left(\left\{ \sin\theta_2 \right\} \cos\omega_2 + \left\{ \cos\theta_2 \right\} \sin\omega_2 \right) \cos\Omega_2 + \left(\left\{ \cos\theta_2 \right\} \cos\omega_2 - \left\{ \sin\theta_2 \right\} \sin\omega_2 \right) \sin\Omega_2 \right] \right] \\ &+ \left[\left(\left\{ \sin\theta_2 \right\} \cos\omega_2 + \left\{ \cos\theta_2 \right\} \sin\omega_2 \right) \cos\Omega_2 + \left(\left\{ \cos\theta_2 \right\} \sin\omega_2 \right) \sin\Omega_2 \right] \right] \right] \\ &+ \left[\left(\left\{ \sin\theta_2 \right\} \cos\omega_2 + \left\{ \cos\theta_2 \right\} \sin\omega_2 \right) \cos\Omega_2 + \left(\left\{ \cos\theta_2 \right\} \sin\omega_2 \right) \sin\Omega_2 \right] \right] \\ \\ &+ \left[\left(\left\{ \sin\theta_2 \right\} \cos\omega_2 + \left\{ \cos\theta_2 \right\} \sin\omega_2 \right) \cos\Omega_2 + \left(\left\{ \cos\theta_2 \right\} \cos\omega_2 - \left\{ \sin\theta_2 \right\} \sin\omega_2 \right) \sin\Omega_2 \right] \right] \\ \\ &+ \left[\left(\left\{ \sin\theta_2 \right\} \cos\omega_2 + \left\{ \cos\theta_2 \right\} \sin\omega_2 \right) \cos\Omega_2 + \left(\left\{ \cos\theta_2 \right\} \sin\omega_2 \right) \sin\Omega_2 \right] \right] \\ \\ &+ \left[\left(\left\{ \sin\theta_2 \right\} \cos\omega_2 + \left\{ \cos\theta_2 \right\} \sin\omega_2 \right) \cos\Omega_2 + \left(\left\{ \sin\theta_2 \right\} \sin\omega_2 \right) \sin\Omega_2 \right] \right] \\ \\ \\ &+ \left[\left(\left\{ \sin\theta_2$$

4.3.1.2 Разложение в ряд величины $\frac{1}{\Delta_0^{2i+1}}$

Уравнение (4.13) перепишем виде:

$$\Delta_{0}^{2} = a_{1}^{2} \gamma_{1}^{2} \left(\frac{\rho_{1}}{a_{1}}\right)^{2} + a_{2}^{2} \gamma_{2}^{2} \left(\frac{\rho_{2}}{a_{2}}\right)^{2} - 2a_{1} \gamma_{1} a_{2} \gamma_{2} \left(\frac{\rho_{1}}{a_{1}}\right) \left(\frac{\rho_{2}}{a_{2}}\right) \cos\left(v_{1} - v_{2}\right) = a_{1}^{2} \gamma_{1}^{2} \left(1 + R_{1}\right)^{2} + a_{2}^{2} \gamma_{2}^{2} \left(1 + R_{2}\right)^{2} - 2a_{1} \gamma_{1} a_{2} \gamma_{2} \left(1 + R_{1}\right) \left(1 + R_{2}\right) \cos\left(v_{1} - v_{2}\right) = a_{1}^{2} \gamma_{1}^{2} + a_{2}^{2} \gamma_{2}^{2} - 2a_{1} \gamma_{1} a_{2} \gamma_{2} \cos\left(v_{1} - v_{2}\right) + a_{1}^{2} \gamma_{1}^{2} \left(2R_{1} + R_{1}^{2}\right) + a_{2}^{2} \gamma_{2}^{2} \left(2R_{2} + R_{2}^{2}\right) - 2a_{1} \gamma_{1} a_{2} \gamma_{2} \left(R_{2} + R_{1} + R_{1} R_{2}\right) \cos\left(v_{1} - v_{2}\right)$$

$$(4.39)$$

где *R*₁, *R*₂ - части разложения модулей радиус-векторов, зависящие от первой и выше степени эксцентриситетов.

Введем обозначения:

$$\rho_{0}^{2} = \left[\gamma_{1}^{2}a_{1}^{2} + \gamma_{2}^{2}a_{2}^{2} - 2\gamma_{1}\gamma_{2}a_{1}a_{2}\cos(v_{1} - v_{2})\right], \qquad (4.40)$$

$$R_{12} = a_{1}^{2}\gamma_{1}^{2}\left(2R_{1} + R_{1}^{2}\right) + a_{2}^{2}\gamma_{2}^{2}\left(2R_{2} + R_{2}^{2}\right) - 2a_{1}\gamma_{1}a_{2}\gamma_{2}\left(R_{2} + R_{1} + R_{1}R_{2}\right)\cos(v_{1} - v_{2}),$$

Тогда из формулы (4.39) следует:

$$\Delta_0^2 = \rho_0^2 + R_{12} \quad . \tag{4.41}$$

Поэтому можно написать

$$\frac{1}{\Delta_0} = \frac{1}{\rho_0} \left(1 + \frac{R_{12}}{\rho_0^2} \right)^{-1/2}$$
(4.42)

$$\frac{1}{\rho_0} = \left[\gamma_1^2 a_1^2 + \gamma_2^2 a_2^2 - 2\gamma_1 \gamma_2 a_1 a_2 \cos(v_1 - v_2)\right]^{-1/2} = \frac{1}{\gamma_2 a_2} \left[1 + \alpha^2 - 2\alpha \cos(v_1 - v_2)\right]^{-1/2}$$
(4.43)

Перепишем формулу (4.43) в виде

$$\frac{1}{\Delta_0^{2i+1}} = \frac{1}{\rho_0^{2i+1}} \left(1 + \frac{R_{12}}{\rho_0^2} \right)^{-(i+1/2)}$$
(4.44)

Разлагая правую часть формулы (4.44) в ряд Тейлора по $\rho_{\scriptscriptstyle 0}$, получим

$$\frac{1}{\Delta_{0}^{2i+1}} = \frac{1}{\rho_{0}^{2i+1}} + (r_{1} - \gamma_{1}a_{1})\frac{\partial}{\partial(\gamma_{1}a_{1})}\left(\frac{1}{\rho_{0}^{2i+1}}\right) + (r_{2} - \gamma_{2}a_{2})\frac{\partial}{\partial(\gamma_{2}a_{2})}\left(\frac{1}{\rho_{0}^{2i+1}}\right) + \dots$$
(4.45)

Обозначим

$$\varepsilon_j = \frac{r_j}{\gamma_j a_j} - 1 \tag{4.46}$$

Из известного разложения в ряд (4.26) следует

$$\frac{r_j}{\gamma_j a_j} = \frac{\rho_j}{a_j} = 1 - e_j \cos M_j + \frac{e_j^2}{2} \left(1 - \cos 2M_j\right) + \frac{3e_j^3}{8} \left(\cos M_j - \cos 3M_j\right) + \dots$$

Поэтому,

$$\varepsilon_{j} = \frac{r_{j}}{\gamma_{j}a_{j}} - 1 = -e_{j}\cos M_{j} + \frac{e_{j}^{2}}{2} \left(1 - \cos 2M_{j}\right) + \frac{3e_{j}^{3}}{8} \left(\cos M_{j} - \cos 3M_{j}\right) + \dots$$
(4.47)

Следовательно, ε_1 имеет порядок $O(e_1)$, а ε_2 имеет порядок $O(e_2)$. Пусть $D_{m,n}$ обозначает дифференциальный оператор

$$D_{m,n} = (\gamma_1 a_1)^m (\gamma_2 a_2)^n \frac{\partial^{m+n}}{\partial (\gamma_1 a_1)^m \partial (\gamma_2 a_2)^n}, \qquad (4.48)$$

тогда из (4.45) получим

$$\frac{1}{\Delta_0^{2i+1}} = \left[1 + \varepsilon_1 D_{1,0} + \varepsilon_2 D_{0,1} + \frac{1}{2!} \left(\varepsilon_1^2 D_{2,0} + 2\varepsilon_1 \varepsilon_2 D_{1,1} + \varepsilon_2^2 D_{0,2}\right) + \dots\right] \frac{1}{\rho_0^{2i+1}}.$$
(4.49)

Однако, из соотношения (4.43) следует:

$$\frac{1}{\rho_0^{2i+1}} = \left\{ \frac{1}{\gamma_2 a_2} \left[1 - \alpha^2 - 2\alpha \cos(v_1 - v_2) \right]^{-1/2} \right\}^{(2i+1)} = \\ = (\gamma_2 a_2)^{-(2i+1)} \left[1 - \alpha^2 - 2\alpha \cos(v_1 - v_2) \right]^{-(i+1/2)} = \\ = (\gamma_2 a_2)^{-(2i+1)} \frac{1}{2} \sum_{j=-\infty}^{\infty} b_{i+1/2}^{(j)} (\alpha) \cos\left[j(v_1 - v_2) \right],$$
(4.50)

$$\frac{1}{2}b_{s}^{(j)}(\alpha) = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{\cos(j\varphi)d\varphi}{\left(1 - 2\alpha\cos\varphi + \alpha^{2}\right)^{s}}$$
(4.51)

Величины $b_s^{(j)}(\alpha)$ согласно формуле (4.51), называются коэффициентами Лапласа, каждый из которых может быть представлен в виде равномерно сходящегося ряда по α для всех $\alpha < 1$ [24, с.247-249].

Введем обозначения:

$$A_{i,j,m,n} = D_{m,n} \left(\left(a_2 \gamma_2 \right)^{-(2i+1)} b_{i+1/2}^{(j)} \left(\alpha \right) \right) =$$

$$\left(\gamma_1 a_1 \right)^m \left(\gamma_2 a_2 \right)^n \frac{\partial^{m+n}}{\partial \left(\gamma_1 a_1 \right)^m \partial \left(\gamma_2 a_2 \right)^n} \left(\left(a_2 \gamma_2 \right)^{-(2i+1)} b_{i+1/2}^{(j)} \left(\alpha \right) \right)$$
(4.52)

В результате формула (4.49) имеет вид

$$\frac{1}{\Delta_0^{2i+1}} = \frac{1}{2} \sum_{j=-\infty}^{\infty} \left[A_{i,j,0,0} + \varepsilon_1 A_{i,j,1,0} + \varepsilon_2 A_{i,j,0,1} + \frac{1}{2!} \left(\varepsilon_1^2 A_{i,j,2,0} + 2\varepsilon_1 \varepsilon_2 A_{i,j,1,1} + \varepsilon_2^2 A_{i,j,0,2} \right) \right] \cos j \left(v_1 - v_2 \right)$$

$$(4.53)$$

Если обобщить это выражение, то окончательно получим

$$\frac{1}{\Delta_0^{2i+1}} = \frac{1}{2} \sum_{j=-\infty}^{\infty} \left[\sum_{l=0}^{\infty} \frac{1}{l!} \sum_{k=0}^{l} \binom{l}{k} \varepsilon_1^{k} \varepsilon_2^{l-k} A_{i,j,k,l-k} \right] \cos j(v_1 - v_2), \qquad (4.54)$$

В формуле (4.54) слагаемые выражаются через орбитальные элементы в виде бесконечного ряда.

При вычислении частных производных $A_{i,j,k,l-k}$ по $(\gamma_1 a_1)$ и $(\gamma_2 a_2)$ следует быть внимательным, поскольку $(\gamma_1 a_1)$ и $(\gamma_2 a_2)$ также неявно содержатся в коэффициентах Лапласа $b_{i+1/2}^{(j)}(\alpha)$.

Подставляя (4.21), (4.26), (4.54) в формулу (4.25), получим окончательное разложение величины (4.25). Используя этот результат, можем написать главные части возмущающей функции.

$$\tilde{U}_{1_{227}} = \frac{\gamma_2 a_2}{r_{12}} = \gamma_2 a_2 \left(\frac{1}{r_{12}}\right), \qquad \tilde{U}_{2_{227}} = \frac{\gamma_2 a_2}{r_{21}} = \gamma_2 a_2 \left(\frac{1}{r_{21}}\right).$$
(4.55)

$$\frac{1}{\Delta} = \sum_{i=0}^{\infty} \frac{(2i)!}{(i!)^2} \cdot \left(\frac{1}{2} r_i r_2 \tilde{\Psi}\right)^i \frac{1}{\Delta_0^{2i+1}}$$
(4.56)

$$\frac{1}{\Delta} = \sum_{i=0}^{\infty} \frac{(2i)!}{(i!)^2} \cdot \left(\frac{1}{2} r_1 r_2 \tilde{\Psi}\right)^i \frac{1}{2} \sum_{j=-\infty}^{\infty} \left[\sum_{l=0}^{\infty} \frac{1}{l!} \sum_{k=0}^{l} \binom{l}{k} \varepsilon_1^{k} \varepsilon_2^{l-k} A_{i,j,k,l-k}\right] \cos j(v_1 - v_2)$$
(4.57)

4.4 Аналитическая формула разложения главной части возмущающей функции

Подставив (4.55) в (4.57), окончательно можем написать разложение главной части возмущающей функции в виде

$$\tilde{U}_{1_{27}} = \frac{\gamma_2 a_2}{r_{12}} = \gamma_2 a_2 \left(\frac{1}{\Delta}\right) , \qquad (4.58)$$

$$\tilde{U}_{2c_{7}} = \frac{\gamma_{2}a_{2}}{r_{21}} = \gamma_{2}a_{2}\left(\frac{1}{\Delta}\right)$$
(4.59)

Подставляя формулу (4.58), (4.59) в (4.9) и (4.12), получаем силовые функции ньютоновского взаимодействия для внутреннего и внешнего объектов $U_{1_{2n}}U_{2_{2n}}$

$$U_{12n} = \sum_{i=0}^{\infty} \frac{(2i)!}{(i!)^2} \cdot \left(\frac{\gamma_1 \gamma_2}{2} \left(\frac{\rho_1}{a_1}\right) \left(\frac{\rho_2}{a_2}\right) \tilde{\Psi}\right)^i \frac{(\gamma_1 a_1)^i (\gamma_2 a_2)^{i+1}}{2} \times \sum_{j=-\infty}^{\infty} \left[\sum_{l=0}^{\infty} \frac{1}{l!} \sum_{k=0}^{l} \binom{l}{k} \varepsilon_{1k} \varepsilon_{2l-k} A_{i,j,k,l-k}\right] \cos j(v_1 - v_2)$$

$$(4.60)$$

$$U_{2cn} = \sum_{i=0}^{\infty} \frac{(2i)!}{(i!)^2} \cdot \left(\frac{\gamma_1 \gamma_2}{2} \left(\frac{\rho_1}{a_1}\right) \left(\frac{\rho_2}{a_2}\right) \tilde{\Psi}\right)^l \frac{(\gamma_1 a_1)^i (\gamma_2 a_2)^{i+1}}{2} \times \sum_{j=-\infty}^{\infty} \left[\sum_{l=0}^{\infty} \frac{1}{l!} \sum_{k=0}^{l} \binom{l}{k} \varepsilon_{1k} \varepsilon_{2l-k} A_{i,j,k,l-k}\right] \cos j(v_1 - v_2)$$

$$(4.61)$$

$$\tilde{U}_{1} = \frac{\mu_{2}}{\gamma_{2}a_{2}} U_{1z_{1}} - \frac{\mu_{2}}{\gamma_{2}a_{2}} \alpha U_{1koce}, \qquad (4.19^{*})$$

$$\tilde{U}_{1_{23}} = \frac{\gamma_2 a_2}{r_{12}} = \gamma_2 a_2 \left(\frac{1}{r_{12}}\right), \qquad \tilde{U}_{1_{kocs}} = \left(\frac{r_1}{\gamma_1 a_1}\right) \left(\frac{\gamma_2 a_2}{r_2}\right)^2 \cos \psi , \qquad (4.13^*)$$

Заметим, что в выражениях (4.60), (4.61) наклонения i_1 и i_2 содержатся только в величине $\tilde{\Psi}$. Отметим так же, что разложение в ряд выражения $\cos j(v_1 - v_2)$ через $\cos(v_1 - v_2)$ и $\sin(v_1 - v_2)$ известно [24, с.254-258, 77, с.141-142, 79, с.541]. В свою очередь разложение функции $\cos v_k$ и $\sin v_k$, k = 1, 2, через орбитальные элементы двух планет, согласно (4.38), (4.39,) также известно. Поэтому разложения $\cos j(v_1 - v_2)$ можно получить с любой необходимой точностью по малым параметрам.

4.5 Аналитическая формула для разложения косвенной части возмущающей функции $\tilde{U}_{1\kappa ocs} = \left(\frac{r_1}{\gamma_1 a_1}\right) \left(\frac{\gamma_2 a_2}{r_2}\right)^2 \cos \psi$

Согласно [71, с.234-241]:

$$\frac{a_1}{r_1} = \gamma_1 a_1 \left(\frac{a_1}{\rho_1} \right) = \gamma_1 a_1 \left(1 + 2\sum_{k=1}^{\infty} J_k \left(k e_1 \right) \cos k M_1 \right)$$
(4.62)

$$\frac{a_2}{r_2} = \gamma_2 a_2 \left(\frac{a_2}{\rho_2}\right) = \gamma_2 a_2 \left(1 + 2\sum_{k=1}^{\infty} J_k \left(ke_2\right) \cos kM_2\right)$$
(4.63)

$$\left(\frac{a_1}{\rho_1}\right)^2 = \left(1 - e_1^2\right)^{-n/2} \left[T_0(n,0) + 2\sum_{k=1}^{\infty} C_k^n T_k(n,0) \cos k\vartheta\right]$$
(4.64)

$$\left(\frac{a_2}{\rho_2}\right)^2 = \left(1 - e_2^2\right)^{-n/2} \left[T_0(n,0) + 2\sum_{k=1}^{\infty} C_k^n T_k(n,0) \cos k\vartheta\right]$$
(4.65)

Подставив (4.62-4.65) в выражения для косвенной части возмущающей функции внутреннего и внешнего объектов, получим их разложение в бесконечный ряд:

$$\begin{split} \tilde{U}_{1\kappa\sigma\sigma\sigma} &= \gamma_1 a_1 \left(1 + \frac{e_1^2}{2} + e_1 \sum_{k=1}^{\infty} \frac{J_{k+1}(ke_1) - J_{k-1}(ke_1)}{k} \cos kM_1 \right) \times \\ &\times \left[\left(\frac{\gamma_2 a_2}{r_2} \right)^2 \times \right] \\ &\times \left[\left(\left\{ \cos \theta_1 \right\} \cos \omega_1 - \left\{ \sin \theta_1 \right\} \sin \omega_1 \right) \cos \Omega_1 - \left(\left\{ \sin \theta_1 \right\} \cos \omega_1 + \left\{ \cos \theta_1 \right\} \sin \omega_1 \right) \sin \Omega_1 \cos i_1 \right] \times \right] \\ &\left[\left(\left\{ \cos \theta_2 \right\} \cos \omega_2 - \left\{ \sin \theta_2 \right\} \sin \omega_2 \right) \cos \Omega_2 - \left(\left\{ \sin \theta_2 \right\} \cos \omega_2 + \left\{ \cos \theta_2 \right\} \sin \omega_2 \right) \sin \Omega_2 \cos i_2 \right] + \right] \\ &+ \left[\left(\left\{ \cos \theta_1 \right\} \cos \omega_1 - \left\{ \sin \theta_1 \right\} \sin \omega_1 \right) \sin \Omega_1 + \left(\left\{ \sin \theta_1 \right\} \cos \omega_1 + \left\{ \cos \theta_1 \right\} \sin \omega_1 \right) \cos \Omega_1 \cos i_1 \right] \times \right] \\ &\times \left[\left(\left\{ \cos \theta_2 \right\} \cos \omega_2 - \left\{ \sin \theta_2 \right\} \sin \omega_2 \right) \sin \Omega_2 + \left(\left\{ \sin \theta_2 \right\} \cos \omega_2 + \left\{ \cos \theta_2 \right\} \sin \omega_2 \right) \cos \Omega_2 \cos i_2 \right] + \\ &+ \left[\left(\left\{ \sin \theta_1 \right\} \cos \omega_1 + \left\{ \cos \theta_1 \right\} \sin \omega_1 \right) \sin i_1 \right] \cdot \left[\left(\left\{ \sin \theta_2 \right\} \cos \omega_2 + \left\{ \cos \theta_2 \right\} \sin \omega_2 \right) \sin i_2 \right] \right] \end{split}$$

$$\begin{split} \tilde{U}_{2\kappa\sigma\sigma\sigma} &= \gamma_2 a_2 \left(1 + \frac{e_2^2}{2} + e_2 \sum_{k=1}^{\infty} \frac{J_{k+1} \left(k e_2 \right) - J_{k-1} \left(k e_2 \right)}{k} \cos k M_2 \right) \times \\ &\times \left[\left(\left\{ \cos \theta_1 \right\} \cos \omega_1 - \left\{ \sin \theta_1 \right\} \sin \omega_1 \right) \cos \Omega_1 - \left(\left\{ \sin \theta_1 \right\} \cos \omega_1 + \left\{ \cos \theta_1 \right\} \sin \omega_1 \right) \sin \Omega_1 \cos i_1 \right] \times \\ &\left[\left(\left\{ \cos \theta_2 \right\} \cos \omega_2 - \left\{ \sin \theta_2 \right\} \sin \omega_2 \right) \cos \Omega_2 - \left(\left\{ \sin \theta_2 \right\} \cos \omega_2 + \left\{ \cos \theta_2 \right\} \sin \omega_2 \right) \sin \Omega_2 \cos i_2 \right] + \\ &+ \left[\left(\left\{ \cos \theta_1 \right\} \cos \omega_1 - \left\{ \sin \theta_1 \right\} \sin \omega_1 \right) \sin \Omega_1 + \left(\left\{ \sin \theta_1 \right\} \cos \omega_1 + \left\{ \cos \theta_1 \right\} \sin \omega_1 \right) \cos \Omega_1 \cos i_1 \right] \times \\ &\times \left[\left(\left\{ \cos \theta_2 \right\} \cos \omega_2 - \left\{ \sin \theta_2 \right\} \sin \omega_2 \right) \sin \Omega_2 + \left(\left\{ \sin \theta_2 \right\} \cos \omega_2 + \left\{ \cos \theta_2 \right\} \sin \omega_2 \right) \cos \Omega_2 \cos i_2 \right] + \\ &+ \left[\left(\left\{ \sin \theta_1 \right\} \cos \omega_1 + \left\{ \cos \theta_1 \right\} \sin \omega_1 \right) \sin i_1 \right] \cdot \left[\left(\left\{ \sin \theta_2 \right\} \cos \omega_2 + \left\{ \cos \theta_2 \right\} \sin \omega_2 \right) \sin i_2 \right] \end{split}$$

В формулах (4.66), (4.67) выражаем среднюю аномалию M_j соответственно (4.34). Выше уже отмечалось, что $\cos\{\theta_j\}$, $\sin\{\theta_j\}$ в фигурных скобках разлагается в бесконечный ряд именно через M_j .

4.6 Аналитическая формула для разложения реактивной силы в возмущающей функции

В выражения возмущающей функции входит реактивная сила (4.5) и (4.10), которую также необходимо выразить через оскулирующие элементы. При этом достаточно разложить в ряд только координаты в следующих формулах

$$\vec{F}_1 \cdot \vec{r}_1 = F_{1x} x_1 + F_{1y} y_1 + F_{1z} z_1 \tag{4.68}$$

$$\vec{F}_2 \cdot \vec{r}_2 = F_{2x} x_2 + F_{2y} y_2 + F_{2z} z_2 \tag{4.69}$$

Более подробно можно написать

$$\vec{F}_{1} \cdot \vec{r}_{1} = F_{1x} \mathcal{X}_{1} + F_{1y} \mathcal{Y}_{1} + F_{1z} \mathcal{Z}_{1} = F_{1x} \left(\gamma_{1} \left(\left\{ \left\{ \rho_{1} \cos \theta_{1} \right\} \cos \omega_{1} - \left\{ \rho_{1} \sin \theta_{1} \right\} \sin \omega_{1} \right) \cos \Omega_{1} - \left\{ \left\{ \rho_{1} \sin \theta_{1} \right\} \cos \omega_{1} + \left\{ \rho_{1} \cos \theta_{1} \right\} \sin \omega_{1} \right) \sin \Omega_{1} \cos i_{1} \right) \right) + F_{1y} \left(\gamma_{1} \left(\left\{ \left\{ \rho_{1} \cos \theta_{1} \right\} \cos \omega_{1} - \left\{ \rho_{1} \sin \theta_{1} \right\} \sin \omega_{1} \right) \sin \Omega_{1} + \left\{ \left\{ \rho_{1} \sin \theta_{1} \right\} \cos \omega_{1} + \left\{ \rho_{1} \cos \theta_{1} \right\} \sin \omega_{1} \right) \cos \Omega_{1} \cos i_{1} \right) \right) + F_{1z} \left(\gamma_{1} \left(\left\{ \left\{ \rho_{1} \sin \theta_{1} \right\} \cos \omega_{1} + \left\{ \rho_{1} \cos \theta_{1} \right\} \sin \omega_{1} \right) \sin i_{1} \right) \right) \right)$$

$$(4.70)$$

$$\vec{F}_{2} \cdot \vec{r}_{2} = F_{2x} \mathcal{X}_{2} + F_{2y} \mathcal{Y}_{2} + F_{2z} \mathcal{Z}_{2} = F_{2x} \Big(\gamma_{2} \Big(\big\{ \left\{ \rho_{2} \cos \theta_{2} \right\} \cos \omega_{2} - \big\{ \rho_{2} \sin \theta_{2} \big\} \sin \omega_{2} \big) \cos \Omega_{2} - \big(\big\{ \rho_{2} \sin \theta_{2} \big\} \cos \omega_{2} + \big\{ \rho_{2} \cos \theta_{2} \big\} \sin \omega_{2} \big) \sin \Omega_{2} \cos i_{2} \Big) \Big) + F_{2y} \Big(\gamma_{2} \Big(\big\{ \big\{ \rho_{2} \cos \theta_{2} \big\} \cos \omega_{2} - \big\{ \rho_{2} \sin \theta_{2} \big\} \sin \omega_{2} \big) \sin \Omega_{2} + \big(\big\{ \rho_{2} \sin \theta_{2} \big\} \cos \omega_{2} + \big\{ \rho_{2} \cos \theta_{2} \big\} \sin \omega_{2} \big) \cos \Omega_{2} \cos i_{2} \Big) \Big) + F_{2z} \Big(\gamma_{2} \Big(\big\{ \big\{ \rho_{2} \sin \theta_{2} \big\} \cos \omega_{2} + \big\{ \rho_{2} \cos \theta_{2} \big\} \sin \omega_{2} \big) \sin i_{2} \Big) \Big) \Big)$$

$$(4.71)$$

В формулах (4.70), (4.71) выражения в фигурных скобках, согласно формулам (4.31) (4.32), разлагаются в бесконечный ряд по средней аномалии

$$\rho_j \cos \theta_j = a_j \left\{ \frac{\rho_j}{a_j} \cos \theta_j \right\} = a_j \left(-e_j + \frac{2\left(1 - e_j^2\right)}{e_j} \sum_{k=1}^\infty J_k \left(k \ e_j\right) \cos kM_j \right)$$
(4.72)

$$\rho_{j}\sin\theta_{j} = a_{j}\left\{\frac{\rho_{j}}{a_{j}}\sin\theta_{j}\right\} = a_{j}\left(\sqrt{1-e_{j}^{2}}\sum_{k=1}^{\infty}\left[J_{k-1}\left(k\ e_{j}\right) - J_{k+1}\left(k\ e_{j}\right)\right]\sin kM_{j}\right),\tag{4.73}$$

Также отметим, что в формулах (4.70), (4.71) выражения определяющие наклонения орбит имеет вид

$$\cos i_{j} = 1 - 2\sin^{2}\frac{i_{j}}{2} = 1 - 2s_{j}^{2}, \qquad s_{j} = \sin(i_{j}/2)$$
(4.74)

При этом с необходимой точностью будем использовать разложения

$$\sin i_{j} = 2\sin \frac{i_{j}}{2} \left(1 - \sin^{2} \frac{i_{j}}{2} \right)^{1/2} = 2s_{j} + O\left(s_{j}^{3}\right)$$
(4.75)

$$\left(1 - \sin^2 \frac{i_j}{2}\right)^{1/2} = 2s_j + O\left(s_j^3\right)$$
(4.76)

4.7 Аналитическая формула для разложения дополнительной силы в возмущающей функции

Разложения дополнительной силы (2.15), (2.18) по [79-81]:

$$\vec{P}_{1} = -\frac{\ddot{\gamma}_{1}}{\gamma_{1}}\vec{r}_{1} = -grad_{r_{1}}P_{1}^{*} \quad \gamma_{1} = \frac{m_{0}(t_{0}) + m_{1}(t_{0})}{m_{0}(t) + m_{1}(t)} = \gamma_{1}(t),$$
(4.77)

$$P_{1}^{*} = \frac{\ddot{\gamma}_{1}}{2\gamma_{1}}r_{1}^{2} = \frac{\ddot{\gamma}_{1}}{2\gamma_{1}}(\gamma_{1}\rho_{1})^{2} = \frac{\ddot{\gamma}_{1}}{2\gamma_{1}}\gamma_{1}^{2}\left[a_{1}^{2}\left\{\frac{\rho_{1}}{a_{1}}\right\}^{2}\right] =$$

$$= \frac{1}{2}\ddot{\gamma}_{1}\gamma_{1}a_{1}^{2}\left(\frac{\rho_{1}}{a_{1}}\right)^{2} = \frac{1}{2}\ddot{\gamma}_{1}\gamma_{1}a_{1}^{2} \times$$

$$\times \left(1 + \frac{e_{1}^{2}}{2} + e_{1}\sum_{k=1}^{\infty}\frac{J_{k+1}(ke_{1}) - J_{k-1}(ke_{1})}{k}\cos kM_{1}\right)$$
(4.78)

$$\vec{P}_{2} = -\frac{\ddot{\gamma}_{2}}{\gamma_{2}}\vec{r}_{2} = -grad_{r_{2}}P_{2}^{*} \quad \gamma_{2} = \frac{m_{0}(t_{0}) + m_{2}(t_{0})}{m_{0}(t) + m_{2}(t)} = \gamma_{2}(t), \tag{4.79}$$

$$P_{2}^{*} = \frac{\ddot{\gamma}_{2}}{2\gamma_{2}}r_{2}^{2} = \frac{\ddot{\gamma}_{2}}{2\gamma_{2}}(\gamma_{2}\rho_{2})^{2} = \frac{\ddot{\gamma}_{2}}{2\gamma_{2}}\gamma_{2}^{2}\left[a_{2}^{2}\left\{\frac{\rho_{2}}{a_{2}}\right\}^{2}\right] = \frac{1}{2}\ddot{\gamma}_{2}\gamma_{2}a_{2}^{2}\left(\frac{\rho_{2}}{a_{2}}\right)^{2} = \frac{1}{2}\ddot{\gamma}_{2}\gamma_{2}a_{2}^{2}\times$$

$$\times\left(1 + \frac{e_{2}^{2}}{2} + e_{2}\sum_{k=1}^{\infty}\frac{J_{k+1}(ke_{2}) - J_{k-1}(ke_{2})}{k}\cos kM_{2}\right)$$
(4.80)

4.8 Основные результаты, полученные в разделе 4

Получены общие уравнения разложения в ряд возмущающих функций в двухпланетной задаче трех тел с массами, изменяющимися анизотропно в различных темпах, на базе апериодического движения по квазиконическому сечению.

Получены аналитические разложения возмущающей функции в виде степенных рядов по эксцентриситетам и наклонениям, в принципе, с любой необходимой точностью.

Полученные соотношения дают возможность разложения возмущающих функции с любой точностью относительно эксцентриситетов и наклонений и далее могут быть использованы для исследования динамической эволюции экзопланетных систем с анизотропным изменением массы родительской звезды и планет.

ЧИСЛЕННЫЕ РЕШЕНИЯ ВОЗМУЩЕННОГО ДВИЖЕНИЯ В ОСКУЛИРУЮЩИХ ЭЛЕМЕНТАХ В ФОРМЕ ЛАГРАНЖА

В настоящей главе мы изучаем общий случай двухпланетной системы, где тела имеют сферически-симметричное распределение масс, которые изменяются неизотропно с разными скоростями, в результате чего возникают реактивные силы.

5.1 Постановка задачи

Рассмотрим экзопланетную систему, состоящую из центрального тела P_0 массой $m_0(t)$ и двух планет P_1 и P_2 массами $m_1(t)$ и $m_2(t)$ соответственно, взаимно притягивающих друг друга согласно всемирному закону тяготения Ньютона [59, с.384, 77, с.135, 80]. Предполагается, что массы тел изменяются неизотропно с разными скоростями, т.е.:

$$\frac{\dot{m}_0}{m_0} \neq \frac{\dot{m}_1}{m_1} \neq \frac{\dot{m}_2}{m_2}$$
,

где точка над символом обозначает полную производную соответствующей функции по времени.

Уравнения возмущенного движения двух планет в относительной системе координат напишем в виде [81]:

$$\ddot{\vec{r}}_{1} + G(m_{0} + m_{1})\frac{\vec{r}_{1}}{r_{1}^{3}} - \frac{\ddot{\gamma}_{1}}{\gamma_{1}}\vec{r}_{1} = grad_{\vec{r}_{1}}\tilde{W}_{1}, \qquad (5.1)$$

$$\ddot{\vec{r}}_{2} + G(m_{0} + m_{2})\frac{\vec{r}_{2}}{r_{2}^{3}} - \frac{\ddot{\gamma}_{2}}{\gamma_{2}}\vec{r}_{2} = grad_{\vec{r}_{2}}\tilde{W}_{2}, \qquad (5.2)$$

где $\vec{r}_j = (x_j, y_j, z_j)$, j = 1,2 радиус-векторы положения тел P_1 и P_2 по отношению к телу P_0 , G – гравитационная постоянная. Функции \tilde{W}_1, \tilde{W}_2 в правой части (5.1), (5.2) могут быть представлены в виде:

$$\tilde{W}_{1} = \tilde{U}_{1} + F_{1x}x_{1} + F_{1y}y_{1} + F_{1z}z_{1} - \frac{\ddot{\gamma}_{1}}{2\gamma_{1}}r_{1}^{2}, \qquad (5.3)$$

$$\tilde{W}_{2} = \tilde{U}_{2} + F_{2x}x_{2} + F_{2y}y_{2} + F_{2z}z_{2} - \frac{\ddot{\gamma}_{2}}{2\gamma_{2}}r_{2}^{2}$$
(5.4)

и называются возмущающими функциями.

Силовые функции \tilde{U}_1, \tilde{U}_2 в (5.3), (5.4) определяются взаимными притяжениями тел P_1 , P_2 и имеют вид:

$$\tilde{U}_{1} = \mu_{2} \left(\frac{1}{r_{12}} - \frac{\vec{r}_{1} \cdot \vec{r}_{2}}{r_{2}^{3}} \right), \qquad \tilde{U}_{2} = \mu_{1} \left(\frac{1}{r_{21}} - \frac{\vec{r}_{1} \cdot \vec{r}_{2}}{r_{1}^{3}} \right).$$
(5.4)

Здесь используются следующие обозначения:

$$r_{j} = \left| \vec{r}_{j} \right| = \left(x_{j}^{2} + y_{j}^{2} + z_{j}^{2} \right)^{1/2}, \quad r_{21} = \left| \vec{r}_{1} - \vec{r}_{2} \right| = r_{12}$$

$$\gamma_{j} = \frac{m_{0}\left(t_{0} \right) + m_{j}\left(t_{0} \right)}{m_{0}\left(t \right) + m_{j}\left(t \right)} = \gamma_{j}\left(t \right), \quad \gamma_{j}\left(t_{0} \right) = 1, \quad \mu_{j} = Gm_{j},$$
(5.5)

где t_0 - начальный момент времени. Реактивные силы $\vec{F}_j(t) = (F_{jx}, F_{jy}, F_{jz})$, возникающие из-за неизотропного изменения масс тел, могут быть представлены в виде:

$$\vec{F}_1 = \vec{F}_1(t) = \frac{\dot{m}_1}{m_1} \vec{V}_1 - \frac{\dot{m}_0}{m_0} \vec{V}_0, \qquad \vec{F}_2 = \vec{F}_2(t) = \frac{\dot{m}_2}{m_2} \vec{V}_2 - \frac{\dot{m}_0}{m_0} \vec{V}_0$$
(5.6)

где $\vec{V_j}$, j = 0,1,2, обозначают относительную скорость частиц, покидающих тело P_j . Массы $m_j(t)$ и скорости $\vec{V_j}$ обычно получают из наблюдений за движением небесных тел и, следовательно, силы $\vec{F_j}$ будем считать заданными функциями времени.

Отметим, что уравнения (5.1), (5.2) не интегрируемы даже в случае постоянных масс тел. Поэтому для исследования динамики системы мы применяем теорию возмущений.

При $W_1 = W_2 = 0$ уравнения (5.1), (5.2) становятся независимыми, и каждое из них имеет точное решение для произвольной, дважды непрерывно дифференцируемой функции $\gamma_j(t) > 0$ [59, с.385, 70, с.74]. Эти решения могут быть представлены в виде

$$\begin{aligned} x_{j} &= \gamma_{j} \rho_{j} \Big[\cos \Big(f_{j} + \omega_{j} \Big) \cdot \cos \Omega_{j} - \sin \Big(f_{j} + \omega_{j} \Big) \cdot \sin \Omega_{j} \cdot \cos i_{j} \Big], \\ y_{j} &= \gamma_{j} \rho_{j} \Big[\cos \Big(f_{j} + \omega_{j} \Big) \cdot \sin \Omega_{j} + \sin \Big(f_{j} + \omega_{j} \Big) \cdot \cos \Omega_{j} \cdot \cos i_{j} \Big], \\ z_{j} &= \gamma_{j} \rho_{j} \Big[\sin \Big(f_{j} + \omega_{j} \Big) \cdot \sin i_{j} \Big], \end{aligned}$$

$$(5.7)$$

где i_j, ω_j, Ω_j - некоторые постоянные, определяемые из начальных условий движения. Переменные ρ_j и f_j определяют коническое сечение, которое в полярных координатах имеет вид:

$$\rho_{j} = \frac{p_{j}}{1 + e_{j} \cos f_{j}}, \quad p_{j} = a_{j} \left(1 - e_{j}^{2} \right), \quad j = 1, 2$$
(5.8)
где e_i , a_j - эксцентриситет и большая полуось, соответственно, (в случае эллипса $0 < e_i < 1$), а истинная аномалия f_i определяется уравнением:

$$\int_{0}^{J_{j}} \frac{df_{j}}{\left(1+e_{j}\cos f_{j}\right)^{2}} = \frac{1}{\left(1-e_{j}^{2}\right)^{3/2}} \left(E_{j}-e_{j}\sin E_{j}\right) = \frac{M_{j}}{\left(1-e_{j}^{2}\right)^{3/2}} = \frac{\sqrt{K_{j0}}}{a_{j}^{3/2}\left(1-e_{j}^{2}\right)^{3/2}} \left(\Phi_{j}\left(t\right)-\Phi_{j}\left(\tau_{j}\right)\right).$$
(5.9)

Здесь параметр τ_i соответствует времени прохождения перигелия,

$$\Phi_{j}(t) = \int_{0}^{t} \frac{dt}{\gamma_{j}^{2}(t)}, \quad K_{j0} = G(m_{0}(t_{0}) + m_{j}(t_{0})), \quad (j = 1, 2)$$
(5.10)

 $M_j = E_j - e_j \sin E_j$ является средней аномалией, а эксцентрическая аномалия E_j связана с истинной аномалией уравнением

$$\tan\frac{f_{j}}{2} = \sqrt{\frac{1+e_{j}}{1-e_{j}}} \tan\frac{E_{j}}{2}.$$
 (5.11)

В случае постоянных масс тел, когда $\gamma_j(t) = 1$, уравнения (5.7)-(5.11) определяют известное решение задачи двух тел, описывающее движение тел P_1 , P_2 вокруг тела P_0 по коническим сечениям [24, c.44-55, 70, c.74].

Следовательно, параметры $a_j, e_j, i_j, \omega_j, \Omega_j$ соответствуют кеплеровским орбитальным элементам, таким как большая полуось, эксцентриситет, наклонение, долгота перицентра и долгота восходящего узла.

Наличие зависящего от времени множителя $\gamma_j(t)$ в правой части выражений (5.7) для декартовых координат x_j, y_j, z_j приводит к отклонению траекторий тел от конических сечений, в то время как параметры орбиты $a_j, e_j, i_j, \omega_j, \Omega_j$ остаются постоянными.

Кроме того, движение тел не является периодическим, и средняя аномалия M_j становится нелинейной функцией времени, определяемой зависимостью $\gamma_j(t)$. По этой причине решение (5.7) описывает апериодическое движение тел по квазиконическим сечениям, а постоянные $a_j, e_j, i_j, \omega_j, \Omega_j, \tau_j$ называются аналогами кеплеровских орбитальных элементов [66, с.671, 80, с.214].

В случае $W_1 \neq 0$, $W_2 \neq 0$ решения уравнений (5.1), (5.2) можно искать в виде (5.7), но параметры орбит $a_j, e_j, i_j, \omega_j, \Omega_j, \tau_j$ теперь являются переменными. Такой подход к решению дифференциальных уравнений часто используется в небесной механике и известен как метод вариации постоянных [77, c.137].

Для получения дифференциальных уравнений, определяющих поведение параметров орбиты, необходимо подставить решение (5.7) в уравнения (5.1), (5.2) и решить их относительно производных орбитальных параметров по времени.

Поскольку реализация такого метода включает в себя очень громоздкие символические вычисления, гораздо удобнее переписать уравнения движения (5.1), (5.2) в гамильтоновой форме и перейти к новым каноническим переменным, известным как элементы Делоне [23, с.231-236, 76, с.510-514]:

$$l_{j} = M_{j}, \quad L_{j} = \sqrt{K_{j0}a_{j}}, \quad g_{j} = \omega_{j}, \quad G_{j} = \sqrt{K_{j0}a_{j}(1 - e_{j}^{2})}$$

$$h_{j} = \Omega_{j}, \quad H_{j} = \sqrt{K_{j0}a_{j}(1 - e_{j}^{2})}\cos i_{j}, \quad j = 1, 2$$
(5.12)

где l_j, g_j, h_j - координаты, а L_j, G_j, H_j - соответствующие им сопряженные импульсы.

Соответствующие функции Гамильтона имеют вид:

$$N = -\frac{K_{j0}^2}{2\gamma_j^2 L_j^2} - \widetilde{W}_j, \quad (j = 1, 2)$$
(5.13)

где возмущающие функции W_1 , W_2 определяются уравнениями (5.3), (5.4) и выражаются через переменные Делоне.

Используя (5.12), можно определить уравнения движения в Гамильтоновой форме

$$\frac{dl_{j}}{dt} = \frac{\partial N_{j}}{\partial L_{j}} = \frac{K_{j0}^{2}}{\gamma_{j}^{2}\Lambda_{j}^{3}} - \frac{\partial \widetilde{W}_{j}}{\partial L_{j}}, \quad \frac{dL_{j}}{dt} = -\frac{\partial N_{j}}{\partial l_{j}} \frac{\partial \widetilde{W}_{j}}{\partial l_{j}},$$

$$\frac{dg_{j}}{dt} = \frac{\partial N_{j}}{\partial G_{j}} = -\frac{\partial \widetilde{W}_{j}}{\partial G_{j}}, \quad \frac{dG_{j}}{dt} = -\frac{\partial N_{j}}{\partial g_{j}} \frac{\partial \widetilde{W}_{j}}{\partial g_{j}},$$

$$\frac{dh_{j}}{dt} = \frac{\partial N_{j}}{\partial H_{j}} = -\frac{\partial \widetilde{W}_{j}}{\partial H_{j}}, \quad \frac{dH_{j}}{dt} = -\frac{\partial N_{j}}{\partial h_{j}} \frac{\partial \widetilde{W}_{j}}{\partial h_{j}}.$$
(5.14)

Принимая во внимание выражения (5.12) и решая систему (5.14) относительно производных орбитальных элементов, получаем следующие планетарные уравнения Лагранжа:

$$\begin{aligned} \frac{da_{j}}{dt} &= \frac{2}{n_{j}a_{j}} \frac{\partial \tilde{W}_{j}}{\partial M_{j}}, \\ \frac{de_{j}}{dt} &= \frac{1}{n_{j}a_{j}^{2}e_{j}} \left(\left(1 - e_{j}^{2}\right) \frac{\partial \tilde{W}_{j}}{\partial M_{j}} - \sqrt{1 - e_{j}^{2}} \frac{\partial \tilde{W}_{j}}{\partial \omega_{j}} \right), \\ \frac{d\omega_{j}}{dt} &= \frac{\sqrt{1 - e_{j}^{2}}}{n_{j}a_{j}^{2}e_{j}} \frac{\partial \tilde{W}_{j}}{\partial e_{j}} - \frac{\operatorname{ctg} i_{j}}{n_{j}a_{j}^{2}\sqrt{1 - e_{j}^{2}}} \frac{\partial \tilde{W}_{j}}{\partial i_{j}}, \\ \frac{d\Omega_{j}}{dt} &= \frac{1}{n_{j}a_{j}^{2}\sqrt{1 - e_{j}^{2}}} \frac{\partial \tilde{W}_{j}}{\sqrt{1 - e_{j}^{2}}} \frac{\partial \tilde{W}_{j}}{\partial \omega_{j}} - \frac{1}{\sin i_{j}} \frac{\partial \tilde{W}_{j}}{\partial \Omega_{j}}, \\ \frac{di_{j}}{dt} &= \frac{1}{n_{j}a_{j}^{2}\sqrt{1 - e_{j}^{2}}} \left(\operatorname{ctg} i_{j} \frac{\partial \tilde{W}_{j}}{\partial \omega_{j}} - \frac{1 - e_{j}^{2}}{\sin i_{j}} \frac{\partial \tilde{W}_{j}}{\partial \Omega_{j}}\right), \\ \frac{dM_{j}}{dt} &= \frac{n_{j}}{\gamma_{j}^{2}(t)} - \frac{2}{n_{j}a_{j}} \frac{\partial \tilde{W}_{j}}{\partial a_{j}} - \frac{1 - e_{j}^{2}}{n_{j}a_{j}^{2}e_{j}} \frac{\partial \tilde{W}_{j}}{\partial e_{j}}, \quad j = 1, 2, \end{aligned}$$

где параметр $n_j = \sqrt{K_{j0}} / a_j^{3/2}$ называется средним движением тел.

5.2 Вычисления возмущающих функций в виде степенных рядов по малым параметрам

Чтобы вычислить частные производные возмущающих функций \tilde{W}_i и выписать уравнение (5.14) в явном виде необходимо выразить возмущающие функции \tilde{W}_i, \tilde{W}_2 через орбитальные элементы $a_i, e_i, i_i, \omega_i, \Omega_i, M_i$.

В рассматриваемом случае малых эксцентриситетов $e_j \ll 1$ и наклонений $i_j \ll 1$. Уравнение Кеплера $M_j = E_j - e_j \sin E_j$ может быть решено относительно эксцентрической аномалии E_j .

Решение может быть представлено в виде степенного ряда по параметру e_i , который быстро сходится при малых значениях e_i [24, c.251, 59, c.387].

Соответствующее разложение с точностью до третьей степени в e_j имеет вид:

$$E_{j} = M_{j} + e_{j} \sin M_{j} + \frac{e_{j}^{2}}{2} \sin(2M_{j}) + \frac{1}{8}e_{j}^{3}(-\sin M_{j} + 3\sin(3M_{j}))$$
(5.16)

Используя (5.8), (5.11) и решение (5.16), с помощью функции Series, встроенной в систему Mathematica [73, с.36-40, 74, с.509, 75, с.1554-1557], получаем следующие разложения:

$$\cos E_{j} = \cos M_{j} + \frac{1}{2}e_{j}\left(-1 + \cos 2M_{j}\right) - \frac{3}{8}e_{j}^{2}\left(\cos M_{j} - \cos 3M_{j}\right) + \frac{1}{3}e_{j}^{3}\left(-\cos 2M_{j} + \cos 4M_{j}\right),$$

$$\sin E_{j} = \sin M_{j} + \frac{1}{2}e_{j}\sin 2M_{j} + \frac{1}{8}e_{j}^{2}\left(-\sin M_{j} + 3\sin 3M_{j}\right) + \frac{1}{6}e_{j}^{3}\left(-\sin 2M_{j} + 2\sin 4M_{j}\right),$$

$$r_{i} = a_{i}\gamma_{1} - \cos(\lambda_{1} - \omega_{1} - \Omega_{1})a_{i}e_{i}\gamma_{1} + \frac{1}{2}e_{i}^{2}\left(a_{i}\gamma_{1} - \cos 2(\lambda_{1} - \omega_{1} - \Omega_{1})a_{i}\gamma_{1}\right) + \frac{3}{8}e_{i}^{3}\left(\cos(\lambda_{1} - \omega_{1} - \Omega_{1})a_{i}\gamma_{1} - \cos 3(\lambda_{1} - \omega_{1} - \Omega_{1})a_{i}\gamma_{1}\right)$$

$$r_{2} = a_{2}\gamma_{2} - \cos(\lambda_{2} - \omega_{2} - \Omega_{2})a_{2}e_{2}\gamma_{2} + \frac{1}{2}e_{2}^{2}\left(a_{2}\gamma_{2} - \cos 2(\lambda_{2} - \omega_{2} - \Omega_{2})a_{2}\gamma_{2}\right) + \frac{3}{8}e_{2}^{3}\left(\cos(\lambda_{2} - \omega_{2} - \Omega_{2})a_{2}\gamma_{2} - \cos 3(\lambda_{2} - \omega_{2} - \Omega_{2})a_{2}\gamma_{2}\right)$$
(5.17)

Аналогичным образом получаем выражения для косинуса и синуса истинных аномалий в виде:

$$\cos f_{j} = \frac{\cos E_{j} - e_{j}}{1 - e_{j} \cos E_{j}} = \cos M_{j} + e_{j} \left(-1 + \cos 2M_{j} \right) - \frac{9}{8} e_{j}^{2} \left(\cos M_{j} - \cos 3M_{j} \right) - \frac{4}{3} e_{j}^{3} \left(\cos 2M_{j} - \cos 4M_{j} \right),$$

$$\sin f_{j} = \frac{\sin E_{j} \sqrt{1 - e_{j}^{2}}}{1 - e_{j} \cos E_{j}} = \sin M_{j} + e_{j} \sin 2M_{j} + \frac{1}{8} e_{j}^{2} \left(-7 \sin M_{j} + 9 \sin 3M_{j} \right) + \frac{1}{6} e_{j}^{3} \left(-7 \sin 2M_{j} + 8 \sin 4M_{j} \right)$$
(5.18)

Для упрощения вычислений введем обозначение $\sin\left(\frac{i_j}{2}\right) = s_j$.

Очевидно, что в случае малых наклонений орбит, косинус и синус наклонения можно представить в виде степенных рядов по малым параметрам *s_j* с точностью до третьего порядка включительно:

$$\cos i_{j} = 1 - 2\sin^{2}\frac{i_{j}}{2} = 1 - 2s_{j}^{2}, \ \sin i_{j} = 2\sin\frac{i_{j}}{2}\left(1 - \sin^{2}\frac{i_{j}}{2}\right)^{1/2} = 2s_{j} + s_{j}^{3}$$
(5.19)

Используя (5.18), находим выражения для $\cos(\omega_j + f_j)$, $\sin(\omega_j + f_j)$ в виде степенных рядов:

$$\cos\left(\omega_{j}+f_{j}\right) = \cos\left(M_{j}+\omega_{j}\right) + e_{j}\left(-\cos\omega_{j}+\cos\left(2M_{j}+\omega_{j}\right)\right) + \frac{1}{8}e_{j}^{2} \times \\ \times\left(-\cos\left(M_{j}-\omega_{j}\right) - 8\cos\left(M_{j}+\omega_{j}\right) + 9\cos\left(3M_{j}+\omega_{j}\right)\right) + \frac{1}{12}e_{j}^{3} \times \\ \times\left(-\cos\left(2M_{j}-\omega_{j}\right) - 15\cos\left(2M_{j}+\omega_{j}\right) + 16\cos\left(4M_{j}+\omega_{j}\right)\right) \\ \sin\left(\omega_{j}+f_{j}\right) = \sin\left(M_{j}+\omega_{j}\right) + e_{j}\left(-\sin\omega_{j}+\sin\left(2M_{j}+\omega_{j}\right)\right) + \\ + \frac{1}{8}e_{j}^{2}\left(\sin\left(M_{j}-\omega_{j}\right) - 8\sin\left(M_{j}+\omega_{j}\right) + 9\sin\left(3M_{j}+\omega_{j}\right)\right) + \\ + \frac{1}{12}e_{j}^{3}\left(\sin\left(2M_{j}-\omega_{j}\right) - 15\sin\left(2M_{j}+\omega_{j}\right) + 16\sin\left(4M_{j}+\omega_{j}\right)\right) \end{aligned}$$
(5.20)

Подставляя разложения (5.19) в (5.7) и выполняя стандартные, но довольно громоздкие символические вычисления, мы получаем следующие выражения для декартовых координат тел P_1 и P_2 , где вместо средней аномалии M_i использована средняя долгота λ_i , определяемая соотношением

$$M_{j} = \lambda_{j} - (\Omega_{j} + \omega_{j}) = \lambda_{j} - \pi_{j}, \qquad \pi_{j} = \Omega_{j} + \omega_{j}, \qquad j = 1, 2, \qquad (5.21)$$

В результате получаем:

$$\begin{aligned} \frac{x_{1}}{\gamma_{1}\rho_{1}} &= \cos\lambda_{1} + \frac{1}{8} \Big(9\cos(2\pi_{1} - 3\lambda_{1}) - \cos(2\pi_{1} - \lambda_{1}) - 8\cos\lambda_{1}\Big)e_{1}^{2} + \\ &+ \frac{1}{12} \Big(16\cos(3\pi_{1} - 4\lambda_{1}) - 15\cos(\pi_{1} - 2\lambda_{1}) - \cos(3\pi_{1} - 2\lambda_{1})\Big)e_{1}^{3} + \\ &+ \Big(-\cos\lambda_{1} + \cos(\lambda_{1} - 2\Omega_{1})\Big)s_{1}^{2} + e_{1}(-\cos\pi_{1} + \cos(\pi_{1} - 2\lambda_{1}) + \\ &+ \Big(\cos\pi_{1} - \cos(\pi_{1} - 2\lambda_{1}) - \cos(\pi_{1} - 2\Omega_{1}) + \cos(\pi_{1} - 2\lambda_{1} + 2\Omega_{1})\Big)s_{1}^{2}\Big) \\ &\frac{y_{1}}{\gamma_{1}\rho_{1}} = \sin\lambda_{1} + \frac{1}{8} \Big(-9\sin(2\pi_{1} - 3\lambda_{1}) - \sin(2\pi_{1} - \lambda_{1}) - 8\sin\lambda_{1}\Big)e_{1}^{2} + \\ &+ \frac{1}{12} \Big(-16\sin(3\pi_{1} - 4\lambda_{1}) + 15\sin(\pi_{1} - 2\lambda_{1}) - \sin(3\pi_{1} - 2\lambda_{1})\Big)e_{1}^{3} + \\ &+ \Big(-\sin\lambda_{1} - \sin(\lambda_{1} - 2\Omega_{1})\Big)s_{1}^{2} + e_{1}(-\sin\pi_{1} - \sin(\pi_{1} - 2\lambda_{1}) + \\ &+ \Big(\sin\pi_{1} + \sin(\pi_{1} - 2\lambda_{1}) + \sin(\pi_{1} - 2\Omega_{1}) + \sin(\pi_{1} - 2\lambda_{1} + 2\Omega_{1})\Big)s_{1}^{2}\Big) \\ &\frac{z_{1}}{\gamma_{1}\rho_{1}} = 2\sin(\lambda_{1} - \Omega_{1})s_{1} - 2\Big(\sin(\pi_{1} - \Omega_{1}) + \sin(\pi_{1} - 2\lambda_{1} + \Omega_{1})\Big)e_{1}s_{1} + \\ &+ \frac{1}{4} \Big(-\sin(2\pi_{1} - \lambda_{1} - \Omega_{1}) - 8\sin(\lambda_{1} - \Omega_{1}) - 9\sin(2\pi_{1} - 3\lambda_{1} + \Omega_{1})\Big)e_{1}^{2}s_{1} - \sin(\lambda_{1} - \Omega_{1})s_{1}^{3} \\ &(5.22)
\end{aligned}$$

Разложения для второго объекта $\frac{x_2}{\gamma_2 \rho_2}$, $\frac{y_2}{\gamma_2 \rho_2}$, $\frac{z_2}{\gamma_2 \rho_2}$ получены аналогичным образом, при этом учитывается соотношение $r_j = \gamma_j \rho_j$, и малость параметра $s_j = \sin(i_j/2) \ll 1$ вследствие предположения о малости наклонений $i_j \ll 1$.

Разложение (5.21) получено с точностью до третьего порядка по малым параметрам e_i и s_i включительно.

Силовые функции (5.4) содержат скалярное произведение

$$\vec{r_1} \cdot \vec{r_2} = x_1 x_2 + y_1 y_2 + z_1 z_2 = r_1 r_2 \cos \psi$$
,

где ψ - угол между двумя радиус-векторами \vec{r}_1 и \vec{r}_2 .

Используя разложения (5.22) и выражение

$$\cos\psi = \frac{x_1 x_2 + y_1 y_2 + z_1 z_2}{r_1 r_2} = \cos(v_1 - v_2) + \Psi, \qquad (5.23)$$

где $v_j = f_j + \omega_j + \Omega_j$ - истинная долгота тел P_j , (j = 1, 2), и выполняя промежуточные разложения, получаем

$$\begin{aligned} \cos(\nu_{1}-\nu_{2}) &= \cos(\lambda_{1}-\lambda_{2}) - \cos(\pi_{1}-\lambda_{2})e_{1} + \cos(\pi_{1}-2\lambda_{1}+\lambda_{2})e_{1} - \\ &-\frac{1}{8}\cos(2\pi_{1}-\lambda_{1}-\lambda_{2})e_{1}^{2} - \cos(\lambda_{1}-\lambda_{2})e_{1}^{2} + \frac{9}{8}\cos(2\pi_{1}-3\lambda_{1}+\lambda_{2})e_{1}^{2} - \\ &-\frac{1}{12}\cos(3\pi_{1}-2\lambda_{1}-\lambda_{2})e_{1}^{3} + \frac{4}{3}\cos(3\pi_{1}-4\lambda_{1}+\lambda_{2})e_{1}^{3} - \frac{5}{4}\cos(\pi_{1}-2\lambda_{1}+\lambda_{2})e_{1}^{3} - \\ &-\cos(\pi_{1}-\lambda_{1})e_{2} + \cos(\pi_{1}+\lambda_{1}-2\lambda_{2})e_{2} + \cos(\pi_{1}-\pi_{2})e_{1}e_{2} - \cos(\pi_{1}+\pi_{2}-2\lambda_{1})e_{1}e_{2} - \\ &-\cos(\pi_{1}+\pi_{2}-2\lambda_{2})e_{1}e_{2} + \cos(\pi_{1}-\pi_{2}-2\lambda_{1}+2\lambda_{2})e_{1}e_{2} - \frac{9}{8}\cos(2\pi_{1}+\pi_{2}-3\lambda_{1})e_{1}^{2}e_{2} + \\ &+\frac{1}{8}\cos(2\pi_{1}-\pi_{2}-\lambda_{1})e_{1}^{2}e_{2} + \cos(\pi_{2}-\lambda_{1})e_{1}^{2}e_{2} - \frac{1}{8}\cos(2\pi_{1}+\pi_{2}-\lambda_{1}-2\lambda_{2})e_{1}^{2}e_{2} - \\ &-\cos(\pi_{2}+\lambda_{1}-2\lambda_{2})e_{1}^{2}e_{2} + \frac{9}{8}\cos(2\pi_{1}-\pi_{2}-3\lambda_{1}+2\lambda_{2})e_{1}^{2}e_{2} + \frac{9}{8}\cos(2\pi_{2}+\lambda_{1}-3\lambda_{2})e_{2}^{2} - \\ &-\frac{1}{8}\cos(2\pi_{2}-\lambda_{1}-\lambda_{2})e_{2}^{2} - \cos(\lambda_{1}-\lambda_{2})e_{2}^{2} - \frac{9}{8}\cos(\pi_{1}+2\pi_{2}-3\lambda_{2})e_{1}e_{2}^{2} + \\ &+\cos(\pi_{1}-\lambda_{2})e_{1}e_{2}^{2} - \frac{1}{8}\cos(\pi_{1}+2\pi_{2}-2\lambda_{1}-\lambda_{2})e_{1}e_{2}^{2} + \frac{1}{8}\cos(\pi_{1}-2\pi_{2}+\lambda_{2})e_{1}e_{2}^{2} - \\ &-\cos(\pi_{1}-2\lambda_{1}+\lambda_{2})e_{1}e_{2}^{2} + \frac{9}{8}\cos(\pi_{1}-2\pi_{2}-2\lambda_{1}+3\lambda_{2})e_{1}e_{2}^{2} + \frac{4}{3}\cos(3\pi_{2}+\lambda_{1}-4\lambda_{2})e_{2}^{3} - \\ &-\cos(3\pi_{2}-\lambda_{1}-2\lambda_{2})e_{1}e_{2}^{2} - \frac{5}{4}\cos(\pi_{2}+\lambda_{1}-2\lambda_{2})e_{1}^{2}e_{2}^{3} - \\ &-\frac{1}{12}\cos(3\pi_{2}-\lambda_{1}-2\lambda_{2})e_{2}^{3} - \frac{5}{4}\cos(\pi_{2}+\lambda_{1}-2\lambda_{2})e_{2}^{3} - \\ &-\frac{1}{12}\cos(\pi_{2}-\lambda_{1}-2\lambda_{2})e_{2}^{3} - \frac{5}{4}\cos(\pi_{2}+\lambda_{1}-2\lambda_{2})e_{2}^{3} - \\ &-\frac{1}{12}\cos(\pi_{2}-\lambda_{1}-2\lambda_{2})e_{2}^{3} - \frac$$

$$\begin{split} \tilde{\Psi} &= \left(-\cos(\lambda_{1} - \lambda_{2}) + \cos(\lambda_{1} + \lambda_{2} - 2\Omega_{1}) \right) s_{1}^{2} - \\ -2\left(\cos(\lambda_{1} + \lambda_{2} - \Omega_{1} - \Omega_{2}) - \cos(\lambda_{1} - \lambda_{2} - \Omega_{1} + \Omega_{2}) \right) s_{1} s_{2} + \\ &+ \left(-\cos(\lambda_{1} - \lambda_{2}) + \cos(\lambda_{1} + \lambda_{2} - 2\Omega_{2}) \right) s_{2}^{2} + \\ + e_{1} \left(\left(\cos(2\lambda_{1} + \lambda_{2} - \omega_{1} - 3\Omega_{1}) - \cos(2\lambda_{1} - \lambda_{2} - \omega_{1} - \Omega_{1}) + \\ + \cos(\lambda_{2} - \omega_{1} - \Omega_{1}) - \cos(\lambda_{2} + \omega_{1} - \Omega_{2}) + \cos(2\lambda_{1} + \lambda_{2} - \omega_{1} - 2\Omega_{1} - \Omega_{2}) - \\ -2\left(\cos(\lambda_{2} - \omega_{1} - \Omega_{2}) - \cos(\lambda_{2} + \omega_{1} - \Omega_{2}) + \cos(2\lambda_{1} - \lambda_{2} - \omega_{1} - \Omega_{2}) - \\ -\cos(2\lambda_{1} - \lambda_{2} - \omega_{1} - 2\Omega_{1} + \Omega_{2}) \right) s_{1} s_{2} + \left(-\cos(2\lambda_{1} - \lambda_{2} - \omega_{1} - \Omega_{1}) + \\ + \cos(\lambda_{2} - \omega_{1} - \Omega_{1}) + \cos(2\lambda_{1} + \lambda_{2} - \omega_{1} - \Omega_{1} - 2\Omega_{2}) - \cos(\lambda_{2} + \omega_{1} + \Omega_{1} - 2\Omega_{2}) \right) s_{2}^{2} \right) + \\ + e_{2} \left(\left(\cos(\lambda_{1} - \omega_{2} - \Omega_{2}) + \cos(\lambda_{1} + 2\lambda_{2} - \omega_{2} - 2\Omega_{1} - \Omega_{2}) - \cos(\lambda_{1} - 2\lambda_{2} + \omega_{2} + \Omega_{2}) - \\ - \cos(\lambda_{1} + \omega_{2} - 2\Omega_{1} + \Omega_{2}) \right) s_{1}^{2} - 2 \left(\cos(\lambda_{1} - \omega_{2} - \Omega_{1}) - \cos(\lambda_{1} + \omega_{2} - \Omega_{1}) \right) + \\ + \cos(\lambda_{1} + 2\lambda_{2} - \omega_{2} - \Omega_{1} - 2\Omega_{2}) - \cos(\lambda_{1} - 2\lambda_{2} + \omega_{2} - \Omega_{1} + 2\Omega_{2}) \right) s_{1} s_{2} + \\ + \left(\cos(\lambda_{1} + 2\lambda_{2} - \omega_{2} - 3\Omega_{2}) + \cos(\lambda_{1} - \omega_{2} - \Omega_{2}) - \\ - \cos(\lambda_{1} + \omega_{2} - \Omega_{2}) - \cos(\lambda_{1} - 2\lambda_{2} + \omega_{2} + \Omega_{2}) \right) s_{1} s_{2} + \\ + \left(\cos(\lambda_{1} + \omega_{2} - \Omega_{2}) - \cos(\lambda_{1} - 2\lambda_{2} + \omega_{2} + \Omega_{2}) \right) s_{1} s_{2} + \\ + \left(\cos(\lambda_{1} + \omega_{2} - \Omega_{2}) - \cos(\lambda_{1} - 2\lambda_{2} + \omega_{2} + \Omega_{2}) \right) s_{1} s_{2} + \\ + \left(\cos(\lambda_{1} + \omega_{2} - \Omega_{2}) - \cos(\lambda_{1} - 2\lambda_{2} + \omega_{2} + \Omega_{2}) \right) s_{1}^{2} s_{2}^{2} \right)$$

$$(5.25)$$

Значения r_1^2 и r_2^2 получаются из (5.17) и имеют вид:

$$r_{1}^{2} = a_{1}^{2} \gamma_{1}^{2} - 2\cos(\lambda_{1} - \omega_{1} - \Omega_{1})a_{1}^{2}e_{1}\gamma_{1}^{2} - \frac{1}{2}(-3 + \cos(2\lambda_{1} - 2\omega_{1} - 2\Omega_{1}))a_{1}^{2}e_{1}^{2}\gamma_{1}^{2} - \frac{1}{4}(\cos(3\lambda_{1} - 3\omega_{1} - 3\Omega_{1}) - \cos(\lambda_{1} - \omega_{1} - \Omega_{1}))a_{1}^{2}e_{1}^{3}\gamma_{1}^{2}$$

$$r_{2}^{2} = a_{2}^{2}\gamma_{2}^{2} - 2\cos(\lambda_{2} - \omega_{2} - \Omega_{2})a_{2}^{2}e_{2}\gamma_{2}^{2} - \frac{1}{2}(-3 + \cos(2\lambda_{2} - 2\omega_{2} - 2\Omega_{2}))a_{2}^{2}e_{2}^{2}\gamma_{2}^{2} - \frac{1}{4}(\cos(3\lambda_{2} - 3\omega_{2} - 3\Omega_{2}) - \cos(\lambda_{2} - \omega_{2} - \Omega_{2}))a_{2}^{2}e_{2}^{3}\gamma_{2}^{2}$$
(5.26)

Полученные разложения позволяют вычислить $1/\Delta$, где $\Delta = \sqrt{\Delta_0^2 - 2r_1r_2\Psi}$, $\Delta_0^2 = r_1^2 + r_2^2 - 2r_1r_2\cos(v_1 - v_2)$. Поскольку Ψ является малой величиной, выражение $1/\Delta$ можно разложить в ряд вида:

$$\frac{1}{\Delta} = \frac{1}{\Delta_0} + \frac{r_1 r_2 \Psi_1}{\Delta_0^3} + \frac{3r_1^2 r_2^2 \Psi_1^2}{2\Delta_0^5}.$$
 (5.27)

Разложение 1/ Δ с точностью до третьего порядка по малым параметрам требует достаточно громоздких символьных вычислений, промежуточные этапы которых приведены в виде (5.28). Полученное выражение имеет вид суммы простых дробей и содержит 2901 слагаемых:

$$\begin{aligned} \frac{1}{\Delta} &= \frac{A_0}{2} + \frac{1}{4} B_0 e_1 \cos\left(2\lambda_1 - \lambda_2 - \omega_1 - \Omega_1\right) - \frac{3}{4} B_0 e_1 \cos\left(\lambda_2 - \omega_1 - \Omega_1\right) - \\ &- \frac{1}{2} B_1 e_1 \cos\left(\lambda_1 - \omega_1 - \Omega_1\right) + \frac{1}{4} B_1 e_1 \cos\left(3\lambda_1 - 2\lambda_2 - \omega_1 - \Omega_1\right) - \\ &- \frac{3}{4} B_1 e_1 \cos\left(\lambda_1 - 2\lambda_2 + \omega_1 + \Omega_1\right) + \frac{1}{4} B_2 e_1 \cos\left(4\lambda_1 - 3\lambda_2 - \omega_1 - \Omega_1\right) - \\ &- \frac{3}{4} B_2 e_1 \cos\left(2\lambda_1 - \lambda_2 - \omega_1 - \Omega_1\right) + \frac{1}{4} B_2 e_1 \cos\left(\lambda_2 - \omega_1 - \Omega_1\right) - \\ &- \frac{3}{4} B_2 e_1 \cos\left(2\lambda_1 - 3\lambda_2 + \omega_1 + \Omega_1\right) + \frac{1}{4} B_3 e_1 \cos\left(5\lambda_1 - 4\lambda_2 - \omega_1 - \Omega_1\right) - \\ &- \frac{3}{4} B_3 e_1 \cos\left(3\lambda_1 - 2\lambda_2 - \omega_1 - \Omega_1\right) - \frac{3}{4} B_3 e_1 \cos\left(3\lambda_1 - 4\lambda_2 + \omega_1 + \Omega_1\right) + \\ &+ \frac{1}{4} B_3 e_1 \cos\left(\lambda_1 - 2\lambda_2 + \omega_1 + \Omega_1\right) + \frac{1}{4} B_4 e_1 \cos\left(6\lambda_1 - 5\lambda_2 - \omega_1 - \Omega_1\right) + \dots + \\ &+ \frac{15 a_2^3 \gamma_2^3 D_4 e_2^3 \cos\left(4\lambda_1 - 3\lambda_2 - \omega_2 - \Omega_2\right)}{16 a_1^3 \gamma_1^3} + \frac{15 a_2^3 \gamma_2^3 D_4 e_2^3 \cos\left(4\lambda_1 - 5\lambda_2 + \omega_2 + \Omega_2\right)}{16 a_1^3 \gamma_1^3} + \\ &+ \frac{5 a_2^3 \gamma_2^3 D_4 e_2^3 \cos\left(4\lambda_1 - 7\lambda_2 + 3\omega_2 + 3\Omega_2\right)}{16 a_1^3 \gamma_1^3} = \sum_{j=1}^{2901} \Phi_j Z_j \end{aligned}$$
(5.28)

где, Φ_j – не тригонометрическая часть, Z_j – часть выраженный через тригонометрические функций.

Определим реактивные силы $\vec{Q}_i = \vec{F}_i / m_i - \vec{F}_0 / m_0 = \frac{\dot{m}_i}{m_i} \vec{V}_i - \frac{\dot{m}_0}{m_0} \vec{V}_0 = \vec{Q}_i(t)$. Будем считать, что скорость движения вылетающих с тел P_1 и P_2 частиц имеет три составляющих: радиальную V_r , трансверсальную V_r и нормальную V_n , которые являются заданными функциями времени. Единичный вектор в радиальном направлении получается из приведенных выше выражений и определяется как $(x_j / (\gamma_j \rho_j), y_j / (\gamma_j \rho_j), z_j / (\gamma_j \rho_j))$.

Однако в скалярном произведении $\vec{V_1} \cdot \vec{r_1} = V_{1r}r_1$ и $\vec{V_2} \cdot \vec{r_2} = V_{2r}r_2$ остается только радиальная составляющая V_r , так как трансверсальная V_r и нормальная V_n составляющие перпендикулярны радиус-векторам $\vec{r_1}$ и $\vec{r_2}$. Для тела P_0 скорости вылетающих частиц имеют три составляющих вдоль осей Ox, Oy, Oz, которые обозначим через V_{0x}, V_{0y}, V_{0z} . Таким образом, скалярные произведения векторов скорости частиц, покидающих тела P_1 и P_2 , и радиус-векторов $\vec{r_1}$ и $\vec{r_2}$ задаются выражениями.

$$\vec{V}_{1}\vec{r}_{1} = v_{1r}r_{1}, \quad \vec{V}_{2}\vec{r}_{2} = v_{2r}r_{2}, \vec{V}_{0}\vec{r}_{1} = V_{0x}x_{x} + V_{0y}y + V_{0z}z, \quad \vec{V}_{0}\vec{r}_{2} = V_{0x}x + V_{0y}y + V_{0z}z$$
(5.29)

Подставляя разложения (5.21), получаем для скалярных произведений следующие выражения:

$$\begin{split} \vec{V}_{1} \cdot \vec{r}_{1} &= V_{0_{2}}a_{1} \left(2\sin(\lambda_{1} - \Omega_{1})s_{1} - 2\left(\sin\omega_{1} - \sin(2\lambda_{1} - \omega_{1} - 2\Omega_{1})\right)e_{1}s_{1} + \\ &+ \frac{1}{4} \left(9\sin(3\lambda_{1} - 2\omega_{1} - 3\Omega_{1}) - 8\sin(\lambda_{1} - \Omega_{1}) + \sin(\lambda_{1} - 2\omega_{1} - \Omega_{1})\right)e_{1}^{2}s_{1} - \sin(\lambda_{1} - \Omega_{1})s_{1}^{3}\right)\gamma_{1} + \\ &+ V_{0_{x}}a_{1} \left(\cos\lambda_{1} + \frac{1}{8} \left(-8\cos\lambda_{1} - \cos(\lambda_{1} - 2\omega_{1} - 2\Omega_{1}) + 9\cos(3\lambda_{1} - 2\omega_{1} - 2\Omega_{1})\right)e_{1}^{2} + \\ &+ \frac{1}{12} \left(-\cos(2\lambda_{1} - 3\omega_{1} - 3\Omega_{1}) + 16\cos(4\lambda_{1} - 3\omega_{1} - 3\Omega_{1}) - 15\cos(2\lambda_{1} - \omega_{1} - \Omega_{1})\right)e_{1}^{3} + \\ &+ \left(-\cos\lambda_{1} + \cos(\lambda_{1} - 2\Omega_{1})\right)s_{1}^{2} + e_{1}\left(\cos(2\lambda_{1} - \omega_{1} - \Omega_{1}) - \cos(\omega_{1} + \Omega_{1}) + \\ &+ \left(\cos(2\lambda_{1} - \omega_{1} - 3\Omega_{1}) - \cos(2\lambda_{1} - \omega_{1} - \Omega_{1}) - \cos(\omega_{1} - \Omega_{1}) + \cos(\omega_{1} + \Omega_{1})\right)s_{1}^{2} \right) \right) \times \\ &\times \gamma_{1} + V_{0_{y}}a_{1}\left(\sin\lambda_{1} + \frac{1}{8} \left(-8\sin\lambda_{1} + \sin(\lambda_{1} - 2\omega_{1} - 2\Omega_{1}) + 9\sin(3\lambda_{1} - 2\omega_{1} - 2\Omega_{1})\right)e_{1}^{2} + \\ &+ \frac{1}{12} \left(\sin(2\lambda_{1} - 3\omega_{1} - 3\Omega_{1}) + 16\sin(4\lambda_{1} - 3\omega_{1} - 3\Omega_{1}) - 15\sin(2\lambda_{1} - \omega_{1} - \Omega_{1})\right)e_{1}^{3} + \\ &+ \left(-\sin\lambda_{1} - \sin(\lambda_{1} - 2\Omega_{1})\right)s_{1}^{2} + e_{1} \left(\sin(2\lambda_{1} - \omega_{1} - \Omega_{1}) - \sin(\omega_{1} + \Omega_{1})\right) + \\ &+ \left(-\sin(2\lambda_{1} - \omega_{1} - 3\Omega_{1}) - \sin(2\lambda_{1} - \omega_{1} - \Omega_{1}) + \sin(\omega_{1} - \Omega_{1}) + \sin(\omega_{1} + \Omega_{1})\right)s_{1}^{2} \right) \right)\gamma_{1}$$
(5.30)

Выполняя аналогичные вычисления для второго тела, получаем:

$$\begin{split} \vec{V_2} \cdot \vec{r_2} &= V_{0z} a_2 \left(2\sin(\lambda_2 - \Omega_2) s_2 - 2(\sin\omega_2 - \sin(2\lambda_2 - \omega_2 - 2\Omega_2)) e_2 s_2 + \right. \\ &+ \frac{1}{4} \left(9\sin(3\lambda_2 - 2\omega_2 - 3\Omega_2) - 8\sin(\lambda_2 - \Omega_2) + \sin(\lambda_2 - 2\omega_2 - \Omega_2) \right) e_2^2 s_2 - \sin(\lambda_2 - \Omega_2) s_2^3 \right) \gamma_2 + \\ &+ V_{0x} a_2 \left(\cos\lambda_2 + \frac{1}{8} \left(-8\cos\lambda_2 - \cos(\lambda_2 - 2\omega_2 - 2\Omega_2) + 9\cos(3\lambda_2 - 2\omega_2 - 2\Omega_2) \right) e_2^2 + \\ &+ \frac{1}{12} \left(-\cos(2\lambda_2 - 3\omega_2 - 3\Omega_2) + 16\cos(4\lambda_2 - 3\omega_2 - 3\Omega_2) - 15\cos(2\lambda_2 - \omega_2 - \Omega_2) \right) e_2^3 + \\ &+ \left(-\cos\lambda_2 + \cos(\lambda_2 - 2\Omega_2) \right) s_2^2 + e_2 \left(\cos(2\lambda_2 - \omega_2 - \Omega_2) - \cos(\omega_2 + \Omega_2) + \\ &+ \left(\cos(2\lambda_2 - \omega_2 - 3\Omega_2) - \cos(2\lambda_2 - \omega_2 - \Omega_2) - \cos(\omega_2 - \Omega_2) + \cos(\omega_2 + \Omega_2) \right) s_2^2 \right) \right) \times \\ &\times \gamma_2 + V_{0y} a_2 \left(\sin\lambda_2 + \frac{1}{8} \left(-8\sin\lambda_2 + \sin(\lambda_2 - 2\omega_2 - 2\Omega_2) + 9\sin(3\lambda_2 - 2\omega_2 - 2\Omega_2) \right) e_2^2 + \\ &+ \left(-\sin(2\lambda_2 - 3\omega_2 - 3\Omega_2) + 16\sin(4\lambda_2 - 3\omega_2 - 3\Omega_2) - 15\sin(2\lambda_2 - \omega_2 - \Omega_2) \right) e_2^3 + \\ &+ \left(-\sin\lambda_2 - \sin(\lambda_2 - 2\Omega_2) \right) s_2^2 + e_2 \left(\sin(2\lambda_2 - \omega_2 - \Omega_2) - \sin(\omega_2 + \Omega_2) \right) e_2^3 + \\ &+ \left(-\sin(2\lambda_2 - \omega_2 - 3\Omega_2) - \sin(2\lambda_2 - \omega_2 - \Omega_2) + \sin(\omega_2 - \Omega_2) + \sin(\omega_2 + \Omega_2) \right) e_2^3 + \\ &+ \left(-\sin(2\lambda_2 - \omega_2 - 3\Omega_2) - \sin(2\lambda_2 - \omega_2 - \Omega_2) + \sin(\omega_2 - \Omega_2) + \sin(\omega_2 + \Omega_2) \right) e_2^3 + \\ &+ \left(-\sin(2\lambda_2 - \omega_2 - 3\Omega_2) - \sin(2\lambda_2 - \omega_2 - \Omega_2) + \sin(\omega_2 - \Omega_2) + \sin(\omega_2 + \Omega_2) \right) e_2^3 + \\ &+ \left(-\sin(2\lambda_2 - \omega_2 - 3\Omega_2) - \sin(2\lambda_2 - \omega_2 - \Omega_2) + \sin(\omega_2 - \Omega_2) + \sin(\omega_2 + \Omega_2) \right) e_2^3 + \\ &+ \left(-\sin(2\lambda_2 - \omega_2 - 3\Omega_2) - \sin(2\lambda_2 - \omega_2 - \Omega_2) + \sin(\omega_2 - \Omega_2) + \sin(\omega_2 + \Omega_2) \right) e_2^3 + \\ &+ \left(-\sin(2\lambda_2 - \omega_2 - 3\Omega_2) - \sin(2\lambda_2 - \omega_2 - \Omega_2) + \sin(\omega_2 - \Omega_2) + \sin(\omega_2 + \Omega_2) \right) e_2^3 + \\ &+ \left(-\sin(2\lambda_2 - \omega_2 - 3\Omega_2) - \sin(2\lambda_2 - \omega_2 - \Omega_2) + \sin(\omega_2 - \Omega_2) + \sin(\omega_2 + \Omega_2) \right) e_2^3 + \\ &+ \left(-\sin(2\lambda_2 - \omega_2 - 3\Omega_2) - \sin(2\lambda_2 - \omega_2 - \Omega_2) + \sin(\omega_2 - \Omega_2) + \sin(\omega_2 + \Omega_2) \right) e_2^3 + \\ &+ \left(-\sin(2\lambda_2 - \omega_2 - 3\Omega_2) - \sin(2\lambda_2 - \omega_2 - \Omega_2) + \sin(\omega_2 - \Omega_2) + \sin(\omega_2 + \Omega_2) \right) e_2^3 + \\ &+ \left(-\sin(2\lambda_2 - \omega_2 - 3\Omega_2) - \sin(2\lambda_2 - \omega_2 - \Omega_2) + \sin(\omega_2 - \Omega_2) + \sin(\omega_2 + \Omega_2) \right) e_2^3 \right) e_2^3 + \\ &+ \left(-\sin(2\lambda_2 - \omega_2 - 3\Omega_2) - \sin(2\lambda_2 - \omega_2 - \Omega_2) + \sin(\omega_2 - \Omega_2) + \sin(\omega_2 + \Omega_2) \right) e_2^3 \right) e_2^3 + \\ &+ \left(-\sin(2\lambda_2 - \omega_2 - 3\Omega_2) + \sin(2\lambda_2 - \omega_2 - \Omega_2) + \sin(\omega_2 - \Omega_2) + \sin(\omega_2 - \Omega_2) \right) e_2^3 \right) e_2^3 +$$

где составляющие скоростей V_{jx}, V_{jy}, V_{jz} рассматриваются как заданные функции времени.

Поскольку нас интересуют вековые возмущения орбитальных параметров, проводим усреднение (5.30-5.31) по λ_1 и λ_2 соответственно. В

результате усредненные силовые функций реактивных сил, действующих на первое и второе тела, вычисленные с точностью до третьего порядка относительно малых параметров, принимают вид:

$$F_{1}^{(\text{sec})} = \vec{F}_{1} \vec{r}_{1} = \frac{\dot{m}_{1}}{m_{1}} a_{1} \gamma_{1} V_{1r} \left(1 + \frac{1}{2} e_{1}^{2} \right) + \frac{\dot{m}_{0}}{m_{0}} a_{1} \gamma_{1} e_{1} \left(V_{0x} \cos\left(\omega_{1} + \Omega_{1}\right) + V_{0y} \sin\left(\omega_{1} + \Omega_{1}\right) + 2s_{1} V_{0z} \sin\omega_{1} - 2s_{1}^{2} \sin\omega_{1} \left(V_{0y} \cos\Omega_{1} - V_{0x} \sin\Omega_{1} \right) \right),$$

$$F_{2}^{(\text{sec})} = \vec{F}_{2} \vec{r}_{2} = \frac{\dot{m}_{2}}{m_{2}} a_{2} \gamma_{2} V_{2r} \left(1 + \frac{1}{2} e_{2}^{2} \right) + \frac{\dot{m}_{0}}{m_{0}} a_{2} \gamma_{2} e_{2} \left(V_{0x} \cos\left(\omega_{2} + \Omega_{2}\right) + V_{0y} \sin\left(\omega_{2} + \Omega_{2}\right) + 2s_{2} V_{0z} \sin\omega_{2} - 2s_{2}^{2} \sin\omega_{2} \left(V_{0y} \cos\Omega_{2} - V_{0x} \sin\Omega_{2} \right) \right)$$
(5.32)

Получим разложение дополнительной силовой функции до третьей степени по малым параметрам в виде:

$$P_{1} = R_{10} = -\frac{\tilde{\gamma}_{1}}{2\gamma_{1}}r_{1}^{2} = -\frac{\tilde{\gamma}_{1}}{2}\gamma_{1}a_{1}^{2}\left(1-2e_{1}\cos\left(\lambda_{1}-\omega_{1}-\Omega_{1}\right)+\frac{1}{2}e_{1}^{2}\left(3-\cos\left(2\lambda_{1}-2\omega_{1}-2\Omega_{1}\right)\right)-\frac{1}{2}e_{1}^{2}\left(3-\cos\left(2\lambda_{1}-2\omega_{1}-2\Omega_{1}\right)\right)-\frac{1}{4}e_{1}^{3}\left(\cos\left(3\lambda_{1}-3\omega_{1}-3\Omega_{1}\right)-\cos\left(\lambda_{1}-\omega_{1}-\Omega_{1}\right)\right)\right),$$

$$P_{2} = R_{20} = -\frac{\tilde{\gamma}_{2}}{2\gamma_{2}}r_{2}^{2} = -\frac{\tilde{\gamma}_{2}}{2}\gamma_{2}a_{2}^{2}\left(1-2e_{2}\cos\left(\lambda_{2}-\omega_{2}-\Omega_{2}\right)+\frac{1}{2}e_{2}^{2}\left(3-\cos\left(2\lambda_{2}-2\omega_{2}-2\Omega_{2}\right)\right)-\frac{1}{4}e_{1}^{3}\left(\cos\left(3\lambda_{1}-3\omega_{1}-3\Omega_{1}\right)-\cos\left(\lambda_{1}-\omega_{1}-\Omega_{1}\right)\right)\right).$$
(5.33)

Усредняя (5.33-5.34) по λ_1 и λ_2 , получаем вековую часть дополнительной силы в виде

$$P_{10} = -\frac{\ddot{\gamma}_{1}}{2\gamma_{1}}r_{1}^{2} = -\frac{\ddot{\gamma}_{1}}{2}\gamma_{1}a_{1}^{2}\left(1 + \frac{3}{2}e_{1}^{2}\right),$$

$$P_{20} = -\frac{\ddot{\gamma}_{2}}{2\gamma_{2}}r_{2}^{2} = -\frac{\ddot{\gamma}_{2}}{2}\gamma_{2}a_{2}^{2}\left(1 + \frac{3}{2}e_{2}^{2}\right).$$
(5.35)

Таким образом, выражения (5.27)-(5.34) определяют возмущающие функции (5.3), (5.4) в терминах орбитальных элементов тел P_1, P_2 третьего порядка по малым параметрам e_i и i_i [79, с.697-704].

5.3 Вековые возмущения орбитальных элементов

Дифференциальные уравнения, определяющие вековые возмущения орбитальных элементов, получаются, если возмущающие функции \tilde{W}_j в планетарных уравнениях Лагранжа (5.14) заменяются их величинами, усредненными по средним аномалиям M_j тел P_1, P_2 .

Соотношение $M_j = \lambda_j - \omega_j - \Omega_j$, позволяет выполнить схему усреднения по средним долготам λ_j .

В третьем порядке по эксцентриситетам e_i и наклонениям s_i возмущающие функции W_i являются полиномами с коэффициентами, являющимися периодическими функциями средних долгот λ_i .

Чтобы выполнить усреднение, необходимо заменить рациональные выражения $1/\rho_0, 1/\rho_0^3, 1/\rho_0^5$ в (5.28), (5.30) соответствующими рядами Фурье, которые можно записать в виде [23, с.258-265].

$$\frac{1}{\rho_{0}} = \frac{1}{2} \sum_{k=-\infty}^{\infty} A_{k} \cos(k(\lambda_{1} - \lambda_{2})),$$

$$\frac{\gamma_{1}\gamma_{2}a_{1}a_{2}}{\rho_{0}^{3}} = \frac{1}{2} \sum_{k=-\infty}^{\infty} B_{k} \cos(k(\lambda_{1} - \lambda_{2})),$$

$$\frac{\gamma_{1}^{2}\gamma_{2}^{2}a_{1}^{2}a_{2}^{2}}{\rho_{0}^{5}} = \frac{1}{2} \sum_{k=-\infty}^{\infty} C_{k} \cos(k(\lambda_{1} - \lambda_{2})),$$
(5.36)

где коэффициенты A_k, B_k, C_k известны как коэффициенты Лапласа и удовлетворяют следующим выражениям

$$A_{k} = \frac{2k-2}{2k-1} \left(\alpha + \frac{1}{\alpha} \right) A_{k-1} - \frac{2k-3}{2k-1} A_{k-2}, \quad k \ge 2,$$

$$B_{k} = \frac{\left(2k+1\right)\alpha \left(1+\alpha^{2}\right)}{\left(1-\alpha^{2}\right)^{2}} A_{k} - \frac{2\alpha^{2} \left(2k+1\right)}{\left(1-\alpha^{2}\right)^{2}} A_{k+1}, \quad k \ge 0,$$

$$C_{i} = \frac{\left(2k+3\right)\alpha \left(1+\alpha^{2}\right)}{3\left(1-\alpha^{2}\right)^{2}} B_{k} - \frac{2\alpha^{2} \left(2k-1\right)}{3\left(1-\alpha^{2}\right)^{2}} B_{k+1}, \quad k \ge 0.$$

(5.37)

Все коэффициенты Лапласа могут быть выражены через коэффициенты A_0 и A_1 :

$$A_{0} = \frac{2}{\pi a_{2} \gamma_{2}} \int_{0}^{\pi} \frac{d\lambda}{\left(1 + \alpha^{2} - 2\alpha \cos \lambda\right)^{1/2}} = \frac{4}{\pi a_{2} \gamma_{2} \left(1 + \alpha\right)} K\left(\frac{4\alpha}{\left(1 + \alpha\right)^{2}}\right),$$

$$A_{1} = \frac{2}{\pi a_{2} \gamma_{2}} \int_{0}^{\pi} \frac{\cos \lambda d\lambda}{\left(1 + \alpha^{2} - 2\alpha \cos \lambda\right)^{1/2}} =$$

$$= \frac{2}{\pi a_{2} \gamma_{2} \alpha \left(1 + \alpha\right)} \left(\left(1 + \alpha\right)^{2} K\left(\frac{4\alpha}{\left(1 + \alpha\right)^{2}}\right) - \left(1 + \alpha\right)^{2} E\left(\frac{4\alpha}{\left(1 + \alpha\right)^{2}}\right) \right),$$
(5.38)

где функции $K(4\alpha/(1+\alpha)^2)$ и $E(4\alpha/(1+\alpha)^2)$ - полные эллиптические интегралы первого и второго рода соответственно и параметр $\alpha = \frac{\gamma_1 a_1}{\gamma_2 a_2} < 1$ [16].

Предполагается, что траектория тела P_1 находится внутри траектории тела P_2 , и условие $r_1 < r_2$ выполнятся в любой момент времени.

Используя ряды (5.37) в выражениях $1/\rho_0, 1/\rho_0^3, 1/\rho_0^5$, усреднение возмущающих функции W_i выполняется по формуле

$$W_{j} = \frac{1}{(2\pi)^{2}} \int_{0}^{2\pi} \int_{0}^{2\pi} W_{j} d\lambda_{1} d\lambda_{2}, \qquad (5.39)$$

В результате получаем вековые части возмущающей функции для первого и второго объекта в виде:

$$\begin{split} W_{1}^{(\text{sec})} &= \frac{Gm_{2}}{2} \Big(A_{0} - B_{1} \Big(s_{1}^{2} + s_{2}^{2} - 2s_{1}s_{2} \cos(\Omega_{1} - \Omega_{2}) \Big) - \frac{1}{2} e_{1}^{2} \Big(\frac{3}{2} B_{0} \alpha + B_{1} - \frac{3C_{0}}{4} \Big(5 + 2\alpha^{2} \Big) + 3\alpha C_{1} + \frac{9}{4} C_{2} \Big) - \frac{1}{2} e_{2}^{2} \Big(\frac{3}{2\alpha} B_{0} + B_{1} - \frac{3C_{0}}{4} \Big(5 + \frac{2}{\alpha^{2}} \Big) + \frac{3}{\alpha} C_{1} + \frac{9}{4} C_{2} \Big) + \frac{e_{1}e_{2}}{4} \Big(9B_{0} + B_{2} + \frac{21}{2} C_{1} + \frac{3}{2} C_{3} - 9C_{0} \frac{1 + \alpha^{2}}{\alpha} + 3C_{2} \frac{1 + \alpha^{2}}{\alpha} \Big) \times \\ \times \cos(\pi_{1} - \pi_{2}) \Big) + F_{1}^{(\text{sec})} + P_{1}^{(\text{sec})}, \end{split}$$

$$W_{2}^{(sec)} = \frac{Gm_{1}}{2} \Big(A_{0} - B_{1} \Big(s_{1}^{2} + s_{2}^{2} - 2s_{1}s_{2} \cos(\Omega_{1} - \Omega_{2}) \Big) - \frac{1}{2} e_{1}^{2} \Big(\frac{3}{2} B_{0} \alpha + B_{1} - \frac{3C_{0}}{4} \Big(5 + 2\alpha^{2} \Big) + 3\alpha C_{1} + \frac{9}{4} C_{2} \Big) - \frac{1}{2} e_{2}^{2} \Big(\frac{3}{2\alpha} B_{0} + B_{1} - \frac{3C_{0}}{4} \Big(5 + \frac{2}{\alpha^{2}} \Big) + \frac{3}{\alpha} C_{1} + \frac{9}{4} C_{2} \Big) + \frac{e_{1}e_{2}}{4} \Big(9B_{0} + B_{2} + \frac{21}{2}C_{1} + \frac{3}{2}C_{3} - 9C_{0} \frac{1 + \alpha^{2}}{\alpha} + 3C_{2} \frac{1 + \alpha^{2}}{\alpha} \Big) \times \cos(\pi_{1} - \pi_{2}) \Big) + F_{2}^{(sec)} + F_{2}^{(sec)}$$

$$(5.40)$$

ГДе
$$\alpha = \frac{\gamma_1 a_1}{\gamma_2 a_2}, \quad \omega_1 + \Omega_1 = \pi_1, \quad \omega_2 + \Omega_2 = \pi_2.$$

$$P_1^{(sec)} = -\frac{\ddot{\gamma}_1}{2} \gamma_1 a_1^2 \left(1 + \frac{3}{2} e_1^2\right), \quad P_2^{(sec)} = -\frac{\ddot{\gamma}_2}{2} \gamma_2 a_2^2 \left(1 + \frac{3}{2} e_2^2\right), \quad (5.41)$$

$$F_1^{(sec)} = \frac{\dot{m}_1}{m} a_1 \gamma_1 V_{1r} \left(1 + \frac{1}{2} e_1^2\right) + \frac{\dot{m}_0}{m} a_1 \gamma_1 e_1 \times$$

$$= \vec{r}_{1} + V_{1} \cdot \vec{r}_{1} \left(-2^{-1} \right) + \vec{m}_{0} + V_{1} + \frac{1}{2} \cdot \vec{r}_{1} + \frac{1}{2} \cdot \vec{r}_{2} \cdot \vec{r}_{2} = \vec{m}_{2} \cdot \vec{r}_{2} + \frac{\dot{m}_{2}}{m_{2}} \cdot \vec{r}_{2} \cdot \vec{r}_{2} \cdot \vec{r}_{2} + \frac{\dot{m}_{2}}{m_{2}} \cdot \vec{r}_{2} \cdot$$

Коэффициенты Лапласа имеют множитель $\frac{1}{a_2\gamma_2}$, который можно вынести, что позволяет переписать возмущающие функции $\tilde{W}_1^{(sec)}, \tilde{W}_2^{(sec)}$ в виде:

$$W_{1}^{(sec)} = \frac{Gm_{2}}{2a_{2}\gamma_{2}} \times \left(A_{0} - \frac{B_{1}}{4}\left(i_{1}^{2} + i_{2}^{2} - 2i_{1}i_{2}\cos(\Omega_{1} - \Omega_{2})\right) + e_{1}^{2}\Pi_{11} + e_{2}^{2}\Pi_{22} + 2e_{1}e_{2}\Pi_{12}\cos(\pi_{1} - \pi_{2})\right) - \frac{1}{2}\gamma_{1}\overset{"}{\gamma}_{1}a_{1}^{2}\left(1 + \frac{3}{2}e_{1}^{2}\right) + P_{1}^{(sec)},$$

$$\tilde{W}_{2}^{(sec)} = \frac{Gm_{1}}{2a_{2}\gamma_{2}} \times \left(A_{0} - \frac{B_{1}}{4}\left(i_{1}^{2} + i_{2}^{2} - 2i_{1}i_{2}\cos(\Omega_{1} - \Omega_{2})\right) + e_{1}^{2}\Pi_{11} + e_{2}^{2}\Pi_{22} + 2e_{1}e_{2}\Pi_{12}\cos(\pi_{1} - \pi_{2})\right) - \frac{1}{2}\gamma_{2}\overset{"}{\gamma}_{2}a_{2}^{2}\left(1 + \frac{3}{2}e_{2}^{2}\right) + P_{2}^{(sec)}\right)$$

$$(5.43)$$

где

$$\Pi_{12} = \frac{9}{8}B_0 + \frac{1}{8}B_2 + \frac{21}{16}C_1 + \frac{3}{16}C_3 - 9C_0\frac{1+\alpha^2}{8\alpha} + 3C_2\frac{1+\alpha^2}{8\alpha};$$

$$\Pi_{11} = -\frac{3}{4}B_0\alpha - \frac{1}{2}B_1 + \frac{3C_0}{8}(5+2\alpha^2) - \frac{3}{2}\alpha C_1 - \frac{9}{8}C_2;$$

$$\Pi_{22} = -\frac{3}{4\alpha}B_0 - \frac{1}{2}B_1 + \frac{3C_0}{8}\left(5+\frac{2}{\alpha^2}\right) - \frac{3}{2\alpha}C_1 - \frac{9}{8}C_2;$$

(5.44)

Заменим $s_j = i_j / 2$ и получим реактивные силы в виде:

$$F_{1}^{(sec)} = \frac{\dot{m}_{1}}{m_{1}} a_{1} \gamma_{1} V_{1r} \left(1 + \frac{1}{2} e_{1}^{2} \right) + \frac{\dot{m}_{0}}{m_{0}} a_{1} \gamma_{1} e_{1} (V_{0x} \cos(\omega_{1} + \Omega_{1}) + V_{0y} \sin(\omega_{1} + \Omega_{1}) + V_{0y} \sin(\omega_{1} + \Omega_{1}) + i_{1} V_{0z} \sin(\omega_{1}) - \frac{1}{2} i_{1}^{2} \sin(\omega_{1}) (V_{0y} \cos\Omega_{1} - V_{0x} \sin\Omega_{1}) \right),$$

$$F_{2}^{(sec)} = \frac{\dot{m}_{2}}{m_{2}} a_{2} \gamma_{2} V_{2r} \left(1 + \frac{1}{2} e_{2}^{2} \right) + \frac{\dot{m}_{0}}{m_{0}} a_{2} \gamma_{2} e_{2} (V_{0x} \cos(\omega_{2} + \Omega_{2}) + V_{0y} \sin(\omega_{2} + \Omega_{2}) + i_{2} V_{0z} \sin(\omega_{2}) - \frac{1}{2} i_{2}^{2} \sin(\omega_{2}) (V_{0y} \cos\Omega_{2} - V_{0x} \sin\Omega_{2}) \right)$$
(5.45)

где $V_{1r}, V_{2r}, V_{0x}, V_{0y}, V_{0z}$ считаются заданными функциями времени, мы будем считать их постоянными.

Усредненные уравнения Лагранжа имеют вид:

$$\frac{de_{j}}{dt} = -\frac{\sqrt{1 - e_{j}^{2}}}{n_{j}a_{j}^{2}e_{j}}\frac{\partial W_{j}^{(\text{sec})}}{\partial \pi_{1}},$$

$$\frac{di_{j}}{dt} = -\frac{1}{n_{j}a_{j}^{2}\sqrt{1 - e_{j}^{2}}sini_{j}}\frac{\partial W_{j}^{(\text{sec})}}{\partial \Omega_{1}} - \frac{tg\left(i_{j}/2\right)}{n_{j}a_{j}^{2}\sqrt{1 - e_{j}^{2}}}\frac{\partial W_{j}^{(\text{sec})}}{\partial \pi_{1}},$$

$$\frac{d\pi_{j}}{dt} = \frac{\sqrt{1 - e_{j}^{2}}}{n_{j}a_{j}^{2}e_{j}}\frac{\partial W_{j}^{(\text{sec})}}{\partial e_{1}} + \frac{tg\left(i_{j}/2\right)}{n_{j}a_{j}^{2}\sqrt{1 - e_{j}^{2}}}\frac{\partial W_{j}^{(\text{sec})}}{\partial i_{1}},$$

$$\frac{d\Omega_{j}}{dt} = \frac{1}{n_{j}a_{j}^{2}\sqrt{1 - e_{j}^{2}}sini_{j}}\frac{\partial W_{j}^{(\text{sec})}}{\partial i_{1}}$$
(5.46)

ГДе $n_j = \sqrt{K_j} / a_j^{3/2} = const, \quad j = 1, 2. \quad K_1 = G(m_{00} + m_{10}), \quad K_2 = G(m_{00} + m_{20}),$

Так как усредненные возмущающие функции $\tilde{W}_{j}^{(sec)}$ не зависят от координат λ_{j} , то соответствующая большая полуось $a_{j} = const$. Производные в правых частях планетарных уравнений Лагранжа определяются как (для малых эксцентриситетов и наклонений мы заменяем в уравнениях Лапласа $\sqrt{1-e_{j}^{2}} = 1$, $\sin i_{j} = i_{j}$, $\cos i_{j} = 1$, сохраняя в разложениях члены до третьего порядка включительно)

$$\begin{aligned} \frac{\partial W_{1}^{(sec)}}{\partial \pi_{1}} &= -\frac{Gm_{2}}{a_{2}\gamma_{2}} e_{1}e_{2}\sin(\pi_{1}-\pi_{2})\Pi_{12} + \frac{\dot{m}_{0}}{m_{0}}a_{1}\gamma_{1}e_{1}(-V_{0x}\sin(\pi_{1})+V_{0y}\cos(\pi_{1})+ \\ &+i_{1}V_{0z}\cos(\pi_{1}-\Omega_{1}) - \frac{1}{2}i_{1}^{2}\cos(\pi_{1}-\Omega_{1})(V_{0y}cos\Omega_{1}-V_{0x}sin\Omega_{1})), \\ \frac{\partial W_{1}^{(sec)}}{\partial \Omega_{1}} &= -\frac{Gm_{2}}{2a_{2}\gamma_{2}}\frac{B_{1}}{2}i_{1}i_{2}\sin(\Omega_{1}-\Omega_{2}) + \frac{\dot{m}_{0}}{m_{0}}a_{1}\gamma_{1}e_{1}\left(-i_{1}V_{0z}\cos(\pi_{1}-\Omega_{1})+\frac{1}{2}i_{1}^{2}\cos(\pi_{1}-\Omega_{1})\right) \times \\ \times \left(V_{0y}cos\Omega_{1}-V_{0x}sin\Omega_{1}\right) + \frac{1}{2}i_{1}^{2}\sin(\pi_{1}-\Omega_{1})(V_{0y}\sin\Omega_{1}+V_{0x}cos\Omega_{1})\right), \\ \frac{\partial W_{1}^{(sec)}}{\partial i_{1}} &= -\frac{Gm_{2}}{2a_{2}\gamma_{2}}\frac{B_{1}}{2}(i_{1}-i_{2}\cos(\Omega_{1}-\Omega_{2})) + \frac{\dot{m}_{0}}{m_{0}}a_{1}\gamma_{1}e_{1} \times \\ \times \left(V_{0z}\sin(\pi_{1}-\Omega_{1})-i_{1}\sin(\pi_{1}-\Omega_{1})(V_{0y}cos\Omega_{1}-V_{0x}sin\Omega_{1})\right), \\ \frac{\partial W_{1}^{(sec)}}{\partial e_{1}} &= -\frac{Gm_{2}}{a_{2}\gamma_{2}}\left(e_{1}\Pi_{11}+e_{2}\Pi_{12}\cos(\pi_{1}-\pi_{2})\right) - \frac{3}{2}\gamma_{1}\overset{"}{\gamma}_{1}a_{1}^{2}e_{1}\frac{\dot{m}_{1}}{m_{1}}a_{1}\gamma_{1}V_{1r}e_{1} + \frac{\dot{m}_{0}}{m_{0}}a_{1}\gamma_{1}(V_{0x}\cos(\pi_{1}) + \\ +V_{0y}\sin(\pi_{1})+i_{1}V_{0z}\sin(\pi_{1}-\Omega_{1}) - \frac{1}{2}i_{1}^{2}\sin(\pi_{1}-\Omega_{1})(V_{0y}cos\Omega_{1}-V_{0x}sin\Omega_{1})\right) \right)$$

$$(5.47)$$

Для удобства вычислений введем следующие безразмерные переменные: время *t* будет измеряться в безразмерных единицах $t^* = n_0 t$ где $n_0 = \sqrt{Gm_{00} / a_1^3}$. Расстояния будут измеряться в единицах измерения $r^* = r / a_1$.

Для измерения массы используем начальную массу тела P_0 и вводим безразмерные массы $m^* = m / m_{00}$: $m_0 = m_{00} m_0^*$, $m_1 = m_{00} m_1^*$, $m_2 = m_{00} m_2^*$

Большая полуось: $a_1^* = 1$, $a_2^* = a_1 a_2^*$ Затем

$$n_{1} = \frac{\sqrt{G(m_{00} + m_{10})}}{a_{1}^{3/2}} = n_{0}\sqrt{1 + m_{10}^{*}}, \quad n_{2} = \frac{\sqrt{G(m_{00} + m_{20})}}{a_{2}^{3/2}} = n_{0}\frac{\sqrt{1 + m_{20}^{*}}}{a_{2}^{*3/2}},$$

$$\frac{Gm_{2}}{n_{1}a_{1}^{2}a_{2}} = n_{0}\frac{m_{2}^{*}}{a_{2}^{*}\sqrt{1 + m_{10}^{*}}}, \quad \frac{Gm_{1}}{n_{2}a_{2}^{3}} = n_{0}\frac{m_{1}^{*}}{a_{2}^{*3/2}\sqrt{1 + m_{20}^{*}}},$$

$$\frac{1}{n_{1}a_{1}^{2}}\frac{\dot{m}_{0}}{m_{0}}a_{1}V_{0x} = n_{0}\frac{\dot{m}_{0}^{*}}{m_{0}^{*}}\frac{V_{0x}^{*}}{\sqrt{1 + m_{10}^{*}}}, \quad \frac{1}{n_{1}a_{1}^{2}}\frac{\dot{m}_{1}}{m_{1}}a_{1}V_{1r} = n_{0}\frac{\dot{m}_{1}^{*}}{m_{1}^{*}}\frac{V_{1r}^{*}}{\sqrt{1 + m_{10}^{*}}},$$

$$\frac{1}{n_{2}a_{2}^{2}}\frac{\dot{m}_{0}}{m_{0}}a_{2}V_{0x} = n_{0}\frac{\dot{m}_{0}^{*}}{m_{0}^{*}}\frac{\sqrt{a_{2}^{*}}V_{0x}^{*}}{\sqrt{1 + m_{20}^{*}}}, \quad \frac{1}{n_{2}a_{2}^{2}}\frac{\dot{m}_{2}}{m_{2}}a_{2}V_{2r} = n_{0}\frac{\dot{m}_{2}^{*}}{m_{2}^{*}}\frac{\sqrt{a_{2}^{*}}V_{2r}^{*}}{\sqrt{1 + m_{20}^{*}}}$$
(5.48)

где все переменные со знаком "*" безразмерны и зависят от безразмерного времени *t*^{*}. Далее мы будем использовать те же обозначения без знака "*".

В результате мы получаем уравнения движения в виде (напомним, что мы извлекаем коэффициенты, $\frac{1}{a_2\gamma_2}$ из $\Pi_{12}, \Pi_{11}, \Pi_{22}$ которые появляются из коэффициентов Лапласа A_0, A_1)

$$\frac{de_{1}}{dt} = \frac{m_{2}^{*}}{a_{2}^{*}\gamma_{2}\sqrt{1+m_{10}^{*}}} \Pi_{12}e_{2}\sin(\pi_{1}-\pi_{2}) - \frac{\dot{m}_{0}^{*}}{m_{0}^{*}}\frac{\gamma_{1}}{\sqrt{1+m_{10}^{*}}}(-V_{0x}\sin(\pi_{1})+V_{0y}\cos(\pi_{1})+ \\
+i_{1}V_{0z}\cos(\pi_{1}-\Omega_{1}) - \frac{1}{2}i_{1}^{2}\cos(\pi_{1}-\Omega_{1})(V_{0y}cos\Omega_{1}-V_{0x}sin\Omega_{1})), \\
\frac{di_{1}}{dt} = \frac{m_{2}^{*}}{4a_{2}^{*}\gamma_{2}\sqrt{1+m_{10}^{*}}}B_{1}i_{2}\sin(\Omega_{1}-\Omega_{2}) - \frac{\dot{m}_{0}^{*}}{m_{0}^{*}}\frac{\gamma_{1}e_{1}}{\sqrt{1+m_{10}^{*}}} \times \\
\times \left(-V_{0z}\cos(\pi_{1}-\Omega_{1}) + \frac{1}{2}i_{1}(V_{0y}\cos(\pi_{1}-2\Omega_{1})+V_{0x}\sin(\pi_{1}-2\Omega_{1})) - \frac{1}{2}i_{1}V_{0x}\sin(\pi_{1}) + \frac{1}{2}i_{1}V_{0y}\cos(\pi_{1})\right), \\
\frac{d\pi_{1}}{dt} = \frac{m_{2}^{*}}{a_{2}^{*}\gamma_{2}\sqrt{1+m_{10}^{*}}}\left(\Pi_{11}+\Pi_{12}\frac{e_{2}}{e_{1}}\cos(\pi_{1}-\pi_{2})\right) - \frac{3}{2\sqrt{1+m_{10}^{*}}}\gamma_{1}\frac{\gamma}{\gamma_{1}} - \frac{m_{2}^{*}}{8a_{2}^{*}\gamma_{2}\sqrt{1+m_{10}^{*}}}B_{1}i_{1}(i_{1}-i_{2}\cos(\Omega_{1}-\Omega_{2})) + \\
+ \frac{\dot{m}_{1}^{*}}{m_{1}^{*}}\frac{\gamma_{1}V_{1r}}{\sqrt{1+m_{10}^{*}}} + \frac{\dot{m}_{0}^{*}}{m_{0}^{*}}\frac{\gamma_{1}}{e_{1}\sqrt{1+m_{10}^{*}}}\left(V_{0x}cos\pi_{1}+V_{0y}sin\pi_{1}\right) + \frac{\dot{m}_{0}^{*}}{m_{0}^{*}}\frac{\gamma_{1}e_{1}i_{1}}{2\sqrt{1+m_{10}^{*}}}V_{0z}\sin(\pi_{1}-\Omega_{1}), \\
\frac{d\Omega_{1}}{dt} = -\frac{m_{2}^{*}}{4a_{2}^{*}\gamma_{2}\sqrt{1+m_{10}^{*}}}B_{1}\left(1-\frac{i_{2}}{i_{1}}\cos(\Omega_{1}-\Omega_{2})\right) + \frac{\dot{m}_{0}^{*}}{m_{0}^{*}}\frac{\gamma_{1}e_{1}}{i_{1}\sqrt{1+m_{10}^{*}}}\sin(\pi_{1}-\Omega_{1})\left(V_{0z}-i_{1}\left(V_{0y}cos\Omega_{1}-V_{0x}sin\Omega_{1}\right)\right), \\
\frac{d\Omega_{2}}{dt} = -\frac{m_{2}^{*}}{4a_{2}^{*}\gamma_{2}\sqrt{1+m_{10}^{*}}}B_{1}\left(1-\frac{i_{2}}{i_{1}}\cos(\Omega_{1}-\Omega_{2}\right) + \frac{\dot{m}_{0}^{*}}{m_{0}^{*}}\frac{\gamma_{1}e_{1}}{i_{1}\sqrt{1+m_{10}^{*}}}\sin(\pi_{1}-\Omega_{1})\left(V_{0z}-i_{1}\left(V_{0y}cos\Omega_{1}-V_{0x}sin\Omega_{1}\right)\right), \\
\frac{d\Omega_{2}}{dt} = -\frac{M_{2}^{*}}{4a_{2}^{*}\gamma_{2}\sqrt{1+m_{10}^{*}}}B_{1}\left(1-\frac{i_{2}}{i_{1}}\cos(\Omega_{1}-\Omega_{2}\right) + \frac{\dot{m}_{0}^{*}}{m_{0}^{*}}\frac{\gamma_{1}e_{1}}{i_{1}\sqrt{1+m_{10}^{*}}}\sin(\pi_{1}-\Omega_{1})\left(V_{0z}-i_{1}\left(V_{0y}cos\Omega_{1}-V_{0x}sin\Omega_{1}\right)\right), \\
\frac{d\Omega_{2}}{dt} = -\frac{M_{2}^{*}}{4a_{2}^{*}\gamma_{2}\sqrt{1+m_{10}^{*}}}B_{1}\left(1-\frac{i_{2}}{i_{1}}\cos(\Omega_{1}-\Omega_{2}\right) + \frac{M_{2}^{*}}{m_{0}^{*}}\frac{\gamma_{1}e_{1}}{i_{1}\sqrt{1+m_{10}^{*}}}\sin(\pi_{1}-\Omega_{1})\left(V_{0z}-i_{1}\left(V_{0y}cos\Omega_{1}-V_{0x}sin\Omega_{1}\right)\right), \\
\frac{d\Omega_{2}}{dt} = -\frac{M_{2}^{*}}{4a_{2}^{*}\gamma_{2}\sqrt{1+m_{10}^{*}}}B_{1}\left(1-\frac{i_{2}^{*$$

$$\begin{aligned} \frac{de_2}{dt} &= -\frac{m_1^*}{a_2^{*3/2} \gamma_2 \sqrt{1+m_{20}^*}} \Pi_{12} e_1 \sin(\pi_1 - \pi_2) - \frac{\dot{m}_0^*}{m_0^*} \frac{\gamma_2 \sqrt{a_2^*}}{\sqrt{1+m_{20}^*}} (-V_{0x} \sin(\pi_2) + V_{0y} \cos(\pi_2) + \\ + i_2 V_{0z} \cos(\pi_2 - \Omega_2) - \frac{1}{2} i_2^2 \cos(\pi_2 - \Omega_2) (V_{0y} \cos\Omega_2 - V_{0x} \sin\Omega_2)), \\ \frac{di_2}{dt} &= -\frac{m_1^*}{4a_2^{*3/2} \gamma_2 \sqrt{1+m_{20}^*}} B_1 i_1 \sin(\Omega_1 - \Omega_2) - \frac{\dot{m}_0^*}{m_0^*} \frac{\gamma_2 e_2 \sqrt{a_2^*}}{\sqrt{1+m_{20}^*}} \times \\ \times \left(-V_{0z} \cos(\pi_2 - \Omega_2) + \frac{1}{2} i_2 (V_{0y} \cos(\pi_2 - 2\Omega_2) + V_{0x} \sin(\pi_2 - 2\Omega_2)) - \frac{1}{2} i_2 V_{0x} \sin(\pi_2) + \frac{1}{2} i_2 V_{0y} \cos(\pi_2) \right), \\ \frac{d\pi_2}{dt} &= \frac{m_1^*}{a_2^{*3/2} \gamma_2 \sqrt{1+m_{20}^*}} \left(\Pi_{22} + \Pi_{12} \frac{e_1}{e_2} \cos(\pi_1 - \pi_2) \right) - \frac{3a_2^{*3/2}}{2\sqrt{1+m_{20}^*}} \gamma_2^* \frac{\gamma}{\gamma_2} - \frac{m_1^*}{8a_2^{*3/2} \gamma_2 \sqrt{1+m_{20}^*}} \times \\ \times B_1 i_2 (i_2 - i_1 \cos(\Omega_1 - \Omega_2)) + \frac{\dot{m}_2^*}{m_2^*} \frac{\gamma_2 V_{2r} \sqrt{a_2^*}}{\sqrt{1+m_{20}^*}} + \frac{\dot{m}_0^*}{m_0^*} \frac{\gamma_2 \sqrt{a_2^*}}{e_2 \sqrt{1+m_{20}^*}} (V_{0x} \cos\pi_2 + V_{0y} \sin\pi_2) + \\ + \frac{\dot{m}_0^*}{m_0^*} \frac{\gamma_2 e_2 i_2 \sqrt{a_2^*}}{2\sqrt{1+m_{20}^*}} V_{0z} \sin(\pi_2 - \Omega_2), \\ \frac{d\Omega_2}{dt} &= -\frac{m_1^*}{4a_2^{*3/2} \gamma_2 \sqrt{1+m_{20}^*}} B_1 \left(1 - \frac{i_1}{i_2} \cos(\Omega_1 - \Omega_2) \right) + \frac{\dot{m}_0^*}{m_0^*} \frac{\gamma_2 e_2 \sqrt{a_2^*}}{i_2 \sqrt{1+m_{20}^*}} \sin(\pi_2 - \Omega_2) \times \\ \times (V_{0z} - i_2 (V_{0y} \cos\Omega_2 - V_{0x} \sin\Omega_2)) \right)$$
(5.50)

Все переменные в уравнениях (5.49), (5.40) безразмерные.

5.4 Численные решения эволюционных уравнений возмущенного движения с учетом изменения масс при наличии реактивных сил

Проведем численное моделирование динамики объектов P_0 (GJ180): P_1 (GJ180b) и P_2 (GJ180c), рассмотренной в третьей главе по эволюционным уравнениям двухпланетной задачи трех тел в аналогах второй системы переменных Пуанкаре.

В таблице 2 показаны параметры численного моделирования динамики системы P₀ (GJ180): P₁ (GJ180b) и P₂ (GJ180c) с учетом изменения масс при наличии реактивных сил, где начальные массы m_{00} , m_{10} , m_{20} соответственно для тел P_0 , P_1 , P_2 . Время измеряется в безразмерных величинах $t^* = n_0 t$, где $n_0 = \sqrt{Gm_{00} / a_1^3}$. Расстояния - в безразмерных величинах $r^* = r / a_1$.

Начальные условия задачи Коши Законы изменения масс описываются законом Эддингтона –Джинса

$$m(t) = \left(m_0^{1-n} - (1-n)t\alpha_0\right)^{\frac{1}{1-n}}$$
(5.51)

В случае постоянной массы

$$m_{0}(t) = \frac{m_{00}(t)}{\left(m_{00}^{1-n} - (1-n)t\alpha_{0}\right)^{\frac{1}{1-n}}} = 1, \qquad m_{1}(t) = \frac{m_{10}(t)}{\left(m_{10}^{1-n} - (1-n)t\alpha_{0}\right)^{\frac{1}{1-n}}} = \frac{6047}{10000000},$$

$$m_{2}(t) = \frac{m_{20}(t)}{\left(m_{20}^{1-n} - (1-n)t\alpha_{0}\right)^{\frac{1}{1-n}}} = \frac{4651}{10000000}.$$
(5.52)

$$\gamma_1(t) = \frac{m_{00} + m_{10}}{m_0(t) + m_1(t)} = 1, \quad \gamma_2(t) = \frac{m_{00} + m_{20}}{m_0(t) + m_2(t)} = 1.$$
(5.53)

В случае изотропной, переменной массы

В случае анизотропной массы, в различных скоростях

$$m_{0}(t) = \frac{m_{00}(t)}{\left(m_{00}^{1-n} - (1-n)t\alpha_{0}\right)^{\frac{1}{1-n}}} = \frac{1}{1 + \frac{t}{100000}}, \qquad m_{1}(t) = \frac{m_{10}(t)}{\left(m_{10}^{1-n} - (1-n)t\alpha_{0}\right)^{\frac{1}{1-n}}} = \frac{1}{\frac{100000000}{6047} + \frac{t}{200000}}, \qquad (5.56)$$

$$m_{2}(t) = \frac{m_{20}(t)}{\left(m_{20}^{1-n} - (1-n)t\alpha_{0}\right)^{\frac{1}{1-n}}} = \frac{1}{\sqrt{\frac{10000000000000000}{21631801} + \frac{t}{200000}}}.$$

$$\gamma_{1}(t) = \frac{m_{00} + m_{10}}{m_{0}(t) + m_{1}(t)} \neq 1, \qquad \gamma_{2}(t) = \frac{m_{00} + m_{20}}{m_{0}(t) + m_{2}(t)} \neq 1. \qquad (5.57)$$

$$\frac{de_{1}}{dt} = K_{1}\gamma_{2}(t)\Pi_{12}(t)e_{2}(t)\sin(\pi_{1}(t) - \pi_{2}(t)) - K_{0}\gamma_{1}(t)(-V_{0x}\sin\pi_{1}(t) + V_{0y}\cos\pi_{1}(t) + V_{1y}\cos\pi_{1}(t))),$$

$$\frac{di_{1}}{dt} = \frac{1}{4}K_{1}\gamma_{2}(t)B_{1}\alpha i_{2}(t)\sin(\Omega_{1}(t) - \Omega_{2}(t)) - K_{0}\gamma_{1}(t)e_{1}(t)(-V_{0z}\cos(\pi_{1}(t) - \Omega_{1}(t))) + \frac{1}{2}i_{1}(t)(V_{0y}\cos(\pi_{1}(t) - 2\Omega_{1}(t)) + V_{0x}\sin(\pi_{1}(t) - 2\Omega_{1}(t))) - \frac{1}{2}i_{1}(t)(V_{0x}\sin\pi_{1}(t) - V_{0y}\cos\pi_{1}(t))),$$

$$\frac{d\pi_{1}}{dt} = K_{1}\gamma_{2}(t)\left(\Pi_{11}(t) + \Pi_{12}(t)\frac{e_{2}(t)}{e_{1}(t)}\cos(\pi_{1}(t) - \pi_{2}(t))\right) - K_{1}(t) - \frac{1}{8}K_{1}\gamma_{2}(t)B_{1}\alpha i_{1}(t) \times (i_{1}(t) - i_{2}(t)\cos(\Omega_{1}(t) - \Omega_{2}(t))) + K_{1}\gamma_{1}(t)V_{1r} + K_{0}\gamma_{1}(t)\left(\frac{1}{e_{1}(t)}(V_{0x}\cos\pi_{1}(t) + V_{0y}\sin\pi_{1}(t)) + \frac{1}{2}e_{1}(t)i_{1}(t)\sin(\pi_{1}(t) - \Omega_{1}(t))\right),$$

$$\frac{d\Omega_{1}}{dt} = -\frac{1}{4}K_{1}\gamma_{2}(t)B_{1}(t)\left(1 - \frac{i_{2}(t)}{i_{1}(t)}\cos(\Omega_{1}(t) - \Omega_{2}(t))\right) + K_{0}\gamma_{1}(t)\frac{e_{1}(t)}{i_{1}(t)}\sin(\pi_{1}(t) - \Omega_{1}(t)) \times (V_{0x}-i_{1}(t))(V_{0y}\cos\Omega_{1}(t) - V_{0y}\sin\Omega_{1}(t))),$$
(5.58)

$$\frac{de_{2}}{dt} = -K_{2}\gamma_{1}(t)\Pi_{12}(t)e_{1}(t)\sin(\pi_{1}(t) - \pi_{2}(t)) - \\
-K_{0}\gamma_{2}(t)\left(-V_{0x}\sin\pi_{2}(t) + V_{0y}\cos\pi_{2}(t) + i_{2}(t)\cos(\pi_{2}(t) - \Omega_{2}(t))\right) \times \\
\times \left(V_{0z} - \frac{1}{2}i_{2}(t)\left(V_{0y}\cos\Omega_{2}(t) - V_{0x}\sin\Omega_{2}(t)\right)\right)\right), \\
\frac{di_{2}}{dt} = -\frac{1}{4}K_{2}\gamma_{1}(t)B_{1}\alpha i_{1}(t)\sin(\Omega_{1}(t) - \Omega_{2}(t)) - K_{0}\gamma_{2}(t)e_{2}(t) \times \\
\times \left(-V_{0z}\cos(\pi_{2}(t) - \Omega_{2}(t)) + \frac{1}{2}i_{2}(t)\left(V_{0y}\cos(\pi_{2}(t) - 2\Omega_{2}(t)\right) + V_{0x}\sin(\pi_{2}(t) - 2\Omega_{2}(t))\right) - \\
-\frac{1}{2}i_{2}(t)\left(V_{0x}\sin\pi_{2}(t) - V_{0y}\cos\pi_{2}(t)\right)\right), \\
\frac{d\pi_{2}}{dt} = K_{2}\gamma_{1}(t)\left(\Pi_{22}(t) + \Pi_{12}(t)\frac{e_{1}(t)}{e_{2}(t)}\cos(\pi_{1}(t) - \pi_{2}(t))\right) - K_{2}(t) - \frac{1}{8}K_{2}\gamma_{1}(t)B_{1}\alpha i_{2}(t) \times \\
\times \left(i_{2}(t) - i_{1}(t)\cos(\Omega_{1}(t) - \Omega_{2}(t))\right) + K_{2}\gamma_{2}(t)V_{2x} + K_{0}\gamma_{2}(t)\left(\frac{1}{e_{2}(t)}\left(V_{0x}\cos\pi_{2}(t) + V_{0y}\sin\pi_{2}(t)\right) + \\
+ \frac{1}{2}e_{2}(t)i_{2}(t)\sin(\pi_{2}(t) - \Omega_{2}(t))\right), \\
\frac{d\Omega_{2}}{dt} = -\frac{1}{4}K_{2}\gamma_{1}(t)B_{1}\alpha\left(1 - \frac{i_{1}(t)}{i_{2}(t)}\cos(\Omega_{1}(t) - \Omega_{2}(t))\right) + K_{0}\gamma_{2}(t)\frac{e_{2}(t)}{i_{2}(t)}\sin(\pi_{2}(t) - \Omega_{2}(t))\right). \tag{5.59}$$

где

$$\begin{split} & K_{1}(t) = \frac{3\gamma_{1}(t)\ddot{\gamma}_{1}(t)}{2\sqrt{1+m_{10}}}, \quad K_{1}(t) = \frac{3a_{2}^{3/2}\gamma_{2}(t)\ddot{\gamma}_{2}(t)}{2\sqrt{1+m_{20}}}, \quad K_{0}\gamma_{1}(t) = \frac{\gamma_{1}(t)\dot{m}_{0}(t)}{2\sqrt{1+m_{10}}}, \\ & K_{0}\gamma_{2}(t) = \frac{a_{2}^{1/2}\gamma_{2}(t)\ddot{m}_{0}(t)}{2\sqrt{1+m_{10}}}, \quad K\gamma_{11}(t) = \frac{\gamma_{1}(t)\ddot{m}_{1}(t)}{m_{1}(t)\sqrt{1+m_{10}}}, \quad K\gamma_{22}(t) = \frac{a_{2}^{1/2}\gamma_{2}(t)\ddot{m}_{2}(t)}{m_{2}(t)\sqrt{1+m_{20}}}, \\ & K_{1}\gamma_{2}(t) = \frac{m_{2}(t)}{a_{2}\gamma_{2}(t)\sqrt{1+m_{10}}}, \quad K_{2}\gamma_{1}(t) = \frac{m_{1}(t)}{a_{2}^{3/2}\gamma_{2}(t)\sqrt{1+m_{20}}}. \\ & \Pi_{11}(t) = \frac{1}{8}\Big(-4B_{1}\alpha - 9C_{2}\alpha - 6\alpha B_{0}\alpha - 12\alpha C_{1}\alpha + 3\Big(5 + 2\alpha^{2}\Big)C_{0}\alpha\Big), \\ & \Pi_{22}(t) = \frac{1}{8}\Big(-4B_{1}\alpha - 9C_{2}\alpha - 6B_{0}\alpha / \alpha - 12C_{1}\alpha / \alpha + 3\Big(5 + 2/\alpha^{2}\Big)C_{0}\alpha\Big), \\ & \Pi_{12} = \frac{1}{16}\Big(18B_{0}\alpha + 2B_{1}\alpha + 21C_{1}\alpha + 3C_{3}\alpha - 18C_{0}\alpha\Big(1 + \alpha^{2}\Big) / \alpha + 6\Big(1 + \alpha^{2}\Big)C_{2}\alpha / \alpha\Big). \end{split}$$

Определим коэффициенты Лапласа в виде функции $A_{01}, A_{10}, A_{01}, A_{11}$

$$\begin{aligned} A_{01} &= \frac{4}{\pi(1+\alpha)} F\left[\frac{4\alpha}{(1+\alpha)^2}\right], \\ A_{10} &= \frac{2}{\pi\alpha(1+\alpha)} \left[(1+\alpha^2) F\left[\frac{4\alpha}{(1+\alpha)^2}\right] - (1+\alpha)^2 E\left[\frac{4\alpha}{(1+\alpha)^2}\right] \right], \\ A_2 &= \frac{2(1+\alpha_1^2)}{3\alpha} A_1 \alpha - \frac{1}{3} A_0 \alpha, \quad A_3 = \frac{8+7\alpha^2+8\alpha^4}{15\alpha^4} A_1 \alpha - \frac{4(1+\alpha^2)}{15\alpha} A_0 \alpha_1, \\ B_0 &= \frac{\alpha(1+\alpha^2)}{(1-\alpha^2)^2} A_0 \alpha - \frac{2\alpha_0^2}{(1-\alpha^2)^2} A_1 \alpha, \quad B_1 = \frac{2\alpha^2}{(1-\alpha^2)^2} A_0 \alpha - \frac{\alpha(1+\alpha^2)}{(1-\alpha^2)^2} A_1 \alpha \\ B_2 &= \frac{\alpha(1+\alpha^2) A_0 \alpha}{(1-\alpha^2)^2} - \frac{2(1-\alpha^2+\alpha^4) A_1 \alpha}{(1-\alpha^2)^2}, \\ B_3 &= \frac{2(2-\alpha^2+2\alpha^4) A_0 \alpha}{3(1-\alpha^2)^2} - \frac{(8-5\alpha^2-5\alpha^4+8\alpha^6) A_1 \alpha}{3\alpha(1-\alpha^2)^2}, \\ C_0 &= \frac{\alpha^2(3+10\alpha^2+3\alpha^4) A_0 \alpha}{3(1-\alpha^2)^4} - \frac{8\alpha^3(1+\alpha^2) A_1 \alpha}{3(1-\alpha^2)^4}, \\ C_1 &= \frac{8\alpha^3(1+\alpha^2) A_0 \alpha}{3(1-\alpha^2)^4} - \frac{\alpha^2(1+14\alpha^2+\alpha^4) A_1 \alpha}{3(1-\alpha^2)^4}, \\ C_2 &= -\frac{\alpha^2(1-18\alpha^2+\alpha^4) A_0 \alpha}{3(1-\alpha^2)^4} + \frac{2\alpha(1-5\alpha^2-5\alpha^4+\alpha^6) A_1 \alpha}{3(1-\alpha^2)^4}, \\ C_3 &= -\frac{4\alpha(1-3\alpha^2-3\alpha^4+\alpha^6) A_0 \alpha}{3(1-\alpha^2)^4} + \frac{(8-25\alpha^2+18\alpha^4-25\alpha^6+8\alpha^8) A_1 \alpha}{3(1-\alpha^2)^4} \end{aligned}$$
(5.60)

На рисунках 5.1-5.4 представлены результаты численных расчетов аналогов орбитальных параметров планет экзопланетной системы Глизе GJ180: GJ 180 b, GJ 180 c по эволюционным уравнениям в в форме Лагранжа на интервале времени 5000 земных лет (100000 орбитальных годах внутренней планеты).

Расчеты выполнены для случая постоянной массы системы, при изотропном изменении массы и анизотропном изменении массы, когда центральная звезда P_0 и планеты P_1 и P_2 теряют массу в различных темпах и реактивные силы не равны нулю.

Скорость вылета частиц была выбрана произвольно, *в плоскости орбиты* - $V_{1r} = 0$, $V_{2r} = 0$, $V_{0x} = 0.05$, $V_{0y} = 0$, $V_{0z} = 0$:

Начальные значения параметров орбит остаются прежними:

– начальные значения аналогов эксцентриситетов для $P_1=0,11$, а для $P_2=0,09$.

- начальные значения аналогов наклонения для $P_1=0,5^0$, а для $P_2=1^0$.

Рисунок 5.1 – Эволюция аналогов эксцентриситета P₁ и P₂ на интервале времени 5000 лет (1- постоянная масса; 2- изотропное изменение массы, 3- анизотропное изменение массы)

На рисунке 5.1 показана эволюция аналогов эксцентриситетов P_1 и P_2 . При постоянном и изотропном изменении мы водим, что уменьшение массы тел приводит к возрастанию периода колебаний эксцентриситетов, хотя их амплитуды не изменяются.

Однако появление реактивной силы в направлении оси *Ox* приводит к увеличению амплитуды колебаний эксцентриситетов, и траектории тел становятся более вытянутыми.

Такое поведение эксцентриситетов представляется физически достаточно реалистичным.

Рисунок 5.2 – Эволюция аналогов наклонения P₁ и P₂ на интервале времени 5000 лет (1- постоянная масса; 2- изотропное изменение массы, 3- анизотропное изменение массы)

Эволюция аналогов наклонения P₁ и P₂ (рисунок 5.2) показывает, что уменьшение масс тел со временем приводит к возрастанию периодов колебаний. Поскольку реактивные силы действуют в плоскости орбит, анизотропия изменения масс практически не влияет на зависимость наклонений орбит от времени.

Рисунок 5.3 - Эволюция аналогов долготы восходящего узла P₁ и P₂ на интервале времени 5000 лет (1- постоянная масса; 2- изотропное изменение массы, 3- анизотропное изменение массы)

Анализ эволюции аналогов долгот восходящего узла P₁ и P₂ (рисунок 5.3) показывает, что при постоянной массе долгота восходящего узла не меняется. Как и в случае наклонений, анизотропия изменения масс практически не влияет на зависимость долготы восходящего узла от времени.

На рисунке 5.4 показаны результаты численных расчетов эволюции аналогов долготы перицентра P₁ и P₂.

Можно отметить, что изменение долготы перицентра в случае переменных масс происходит медленнее по сравнению со случаем постоянных масс, причем анизотропия в изменении масс приводит лишь к небольшим отклонениям долготы перицентра от соответствующих зависимостей при изотропном изменении масс.

Рисунок 5.4 – Эволюция аналогов долготы перицентра P₁ и P₂ на интервале времени 5000 лет (1- постоянная масса; 2- изотропное изменение массы, 3- анизотропное изменение массы)

Численные расчеты по эволюционным уравнениям в форме Лагранжа с изменением скорости вылета частиц в *плоскости орбиты* $(V_{1r} = 0, V_{2r} = 0, V_{0x} = 0.05, V_{0y} = 0, V_{0z} = 0)$ (рисунки 5.1-4.4), показывают, что на интервале времени 5000 земных лет орбитальные параметры планет при заданных условиях, практически не изменяются.

Появление реактивной силы в направлении *плоскости орбиты* приводит к увеличению амплитуды колебаний эксцентриситетов и траектории тел становятся более вытянутыми. Анизотропия изменения масс практически не влияет на зависимость долготы восходящего узла от времени.

На рисунках 5.5-5.8 представлены результаты численных расчетов аналогов орбитальных параметров планет экзопланетной системы Глизе GJ180: GJ 180 b, GJ 180 c по эволюционным уравнениям в форме Лагранжа, когда скорости вылета частиц были выбраны произвольно, но *перпендикулярно плоскости орбиты* - $V_{1r} = 0$, $V_{2r} = 0$, $V_{0x} = 0$, $V_{0z} = 1/10$. Начальные значения параметров орбит остаются прежними.

Рисунок 5.5 – Эволюция аналогов долготы эксцентриситета P₁ и P₂ на интервале времени 5000 лет (1- постоянная масса; 2- изотропное изменение массы, 3- анизотропное изменение массы)

Рисунок 5.6– Эволюция аналогов долготы наклонения P₁ и P₂ на интервале времени 5000 лет (1- постоянная масса; 2- изотропное изменение массы, 3- анизотропное изменение массы)

Рисунок 5.7 – Эволюция аналогов долготы восходящего узла P₁ и P₂ на интервале времени 5000 лет (1- постоянная масса; 2- изотропное изменение массы, 3- анизотропное изменение массы)

Рисунок 5.8 - Эволюция аналогов долготы перицентра P₁ и P₂ на интервале времени 5000 лет (1- постоянная масса; 2- изотропное изменение массы, 3- анизотропное изменение массы)

Численные расчеты эволюции аналогов орбитальных элементов P₁ и P₂ на интервале времени 5000 лет по уравнениям в форме Лагранжа показывают: — Влияние анизотропии изменения масс тел на эксцентриситет достаточно мало, начальные значения эксцентриситетов P₁=0,11, P₂=0,09 изменяются до P₁=0,13 и P₂=0,15, т.е. в этом случае орбиты становятся более вытянутыми.

– Аналоги наклонения изменяются от начальных значений $P_1=0,5^0$, $P_2=1^0$ и становятся для первого объекта $P_1=1.7^0$, для второго - $P_2=2,3^0$.

– Наличие реактивной силы приводит к изменениям аналогов долготы восходящего узла.

– Долгота перицентра лишь незначительно отличается от случая изотропного изменения масс. Происходит медленное вращения траектории, поэтому долгота перицентра растет.

Таким образом, численные расчеты показывают, что наиболее сильно реактивные силы влияют на наклонение орбит и на долготу восходящего узла.

5.5 Основные результаты, полученные в разделе 5

Рассмотрен общий случай двухпланетной системы, когда массы всех трех тел изменяются неизотропно с различными скоростями, что приводит к возникновению реактивных сил.

При использовании теории возмущений в качестве невозмущенного (начальное приближение) рассмотрено точное решение задачи двух тел с переменными массами, описывающее апериодическое движение по квазиконическому сечению.

Получены возмущающие функции в виде степенных рядов по эксцентриситетам и наклонениям до третьего порядка включительно и выведены дифференциальные уравнения, определяющие поведение орбитальных параметров в виде планетарных уравнений Лагранжа.

Усреднением уравнений движения по средним долготам тел при отсутствии резонансов среднего движения получены дифференциальные уравнения, описывающие эволюцию орбитальных параметров на длительном интервале времени в 5000 земных лет.

По эволюционным уравнениям в форме Лагранжа, с использованием системы компьютерной алгебры Wolfram Mathematica, выполнены численные расчеты эволюции аналогов орбитальных элементов планет экзопланетной системы Глизе GJ180: GJ 180 b, GJ 180 c.

Показано, что наличие реактивной силы наиболее сильно влияет на наклонение орбит и на долготу восходящего узла планет системы.

ЗАКЛЮЧЕНИЕ

Проведенные в диссертационной работе исследования привели к следующим основным результатам:

1. В данной диссертации в небесно-механическом аспекте с использованием известных математических моделей, исследованы эффекты влияния переменности масс на орбитальные элементы планеты, чтобы понять природу динамической эволюции экзопланетных систем.

2. Построена математическая модель экзопланетных систем при наличии реактивных сил, когда массы меняются анизотропно. Получены уравнения движения рассматриваемой задачи в относительной системе координат с началом в центре родительской звезды, более удобные для использования теории возмущении на базе апериодического движения по квазиконическому сечению. Получены выражения для реактивных сил при анизотропном изменении массы в орбитальной системе координат.

3. На основе построенной модели на первом этапе проведены исследования эволюции орбитальных параметров в аналогах переменных Пуанкаре. На основе результатов численных расчетов по эволюционным уравнениям в аналогах второй системы переменных Пуанкаре, можно сделать вывод, что при изменении скорости вылета частиц в плоскости орбиты на интервале времени 5000 земных лет орбитальные параметры практически не изменяются по сравнению со случаем изотропного изменения масс.

При изменении скорости вылета частиц перпендикулярно плоскости орбиты реактивная сила оказывает влияние на некоторые орбитальные параметры планет, например, на аналоги эксцентриситета и наклонения, которые приводят к более вытянутым орбитам.

В аналогах второй системы элементов Пуанкаре уравнения движения нужно несколько раз преобразовывать, из-за этого они теряют точность.

4. Получены уравнения возмущенного движения по оскулирующим элементам в форме Лагранжа. Получены общие уравнения разложения в ряд возмущающих функций в двухпланетной задаче трех тел с массами, изменяющимися анизотропно в различных темпах, на базе апериодического движения по квазиконическому сечению.

Выполнено усреднение уравнения движения по средним долготам тел в отсутствие резонансов среднего движения, получены дифференциальные уравнения, описывающие эволюцию орбитальных параметров в течение длительных периодов времени. При этом учитываются эффекты убывания массы родительской звезды из-за аккреции вещества из остатков протопланетного диска.

Получены аналитические разложения возмущающей функции в виде степенных рядов по эксцентриситетам и наклонениям, в принципе, с любой необходимой точностью.

Получены уравнения вековых возмущений в виде планетарных уравнений Лагранжа.

97

Полученные соотношения дают возможность разложения возмущающих функции с любой точностью относительно эксцентриситетов и наклонений и далее могут быть использованы для исследования динамической эволюции экзопланетных систем с анизотропным изменением массы родительской звезды и планет.

5. По эволюционным уравнениям в форме Лагранжа, с использованием системы компьютерной алгебры Wolfram Mathematica, выполнены численные расчеты эволюции аналогов орбитальных элементов планет экзопланетной системы Глизе GJ180: GJ 180 b, GJ 180 c. Показано, что наличие реактивной силы наиболее сильно влияет на наклонение орбит и на долготу восходящего узла планет системы.

6. Показано, что одним из механизмов, которым можно объяснить незначительного увеличения значения эксцентриситетов и наклонений в экзопланетных системах, может являться анизотропное изменение масс центральной звезды и аккреция вещества на планеты, которые влияют на динамическую эволюцию системы.

7. Результаты численных расчетов эволюции параметров орбит в двухпланетной системе в случае постоянной и изотропно переменной массы совпадают с результатами других авторов.

Таким образом, поставленные задачи в диссертационной работе решены полностью. Результаты работы могут быть использованы для изучения динамики экзопланетных систем, а также в отдельных небесно-механических задачах по исследованию эволюции орбитальных параметров.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1 NASA Exoplanet Archive //A service of NASA Exoplanet Institute Science. http://exoplanetarchive.ipac.caltech.edu 05.2019.

2 Udry S, Fischer D, Queloz D. A Decade of Radial-Velocity Discoveries in the Exoplanet Domain // Protostars and Planets. – 2007. – P.685-699.

3 Сурдин В.Г. Рождение звезд // М.: Эдиториал УРСС. – 2001. – 264с.

4 Lukyanov L.G. Dynamical evolution of stellar orbits in close binary systems with conservative masstransfer //Astron. Rep. -2008. - V.52(8). - P.680-693.

5 Астрономия: век XXI // ISBN 978-5-85099-175-3, под ред. Сурдин В.Г. //Фрязино: Век2. – 2007. – 608с.

6 Софронов В.С. Эволюция до планетного облака и образование Земли и планет // М.: Наука. – 1969. – 243с.

7 Черепащук А.М. Тесные двойные звезды. Часть II. //М.: Физматлит. - 2013. – С.572.

8 Фесенков В.Г. Корпускулярная радиация как фактор эволюции Солнца и звёзд // Солнце и солнечная система: Избр. Труды. М.: Наука. – 1976. – 504с.

9 Омаров Т.Б. Динамика гравитирующих систем метагалактики // Изд. Наука, Казахской ССР. – Алма-Ата. – 1975. -144с.

10 Hadjidemetriou J. Secular Variation of Mass and the Evolution of Binary Systems // Advances in Astronomy and Astrophysics – 1967. – V.5. – P.131-188.

11 Ксанфомалити Л.В. 24 генеральная ассамблея МАС, симпозиум 202. Планетные системы во Вселенной // Астрономический Вестник. – 2001. – Т. 35. №2. – С.188-192.

12 Trevor Justin David. On the evolutionary pathways of stars and extrasolar planets // Thesis. California Institute Of TechnologyPasadena, California. – 2017. – P.447. ORCID: 0000-0001-6534-6246.

13 Erkaev N. V., Kulikov, Yu. N., Lammer H. et al. Roche lobe effects on the atmospheric loss of Hot Jupiters // Astronomy and Astrophysics. – 2007. – Vol. 472. – Issue. 1. – P. 329-334.

14 Eric B. Ford, Boris Kozinsky, Frederic A. Rasio. Secular Evolution of Hierarchical Triple Star Systems // Astrophysical Journal. – V. 535. – Issue.1. – 2000. – P. 385-401.

15 Howard Chen, Eric T. Wolf, Ravi Kopparapu et al. Biosignature Anisotropy Modeled On Temperate Tidally Locked M-Dwarf Planets // Astrophysical Journal Letters. – 2018. – Vol. 868. – Issue 1. – ID. L6. – P. 9.

16 Zanazzi J. J., Dong Lai. Triaxial Deformation and Asynchronous Rotation of RockyPlanets in the Habitable Zone of Low-Mass Stars // MNRAS. -2017. – Vol. 469. – Issue 3. – P. 2879-2885.

17 Libert, Anne-Sophie, Sansottera Marco. On the extension of the LaplaceLagrange secular theory to order two in the masses for extrasolar systems //

Celestial Mechanics and Dynamical Astronomy. – 2013. – Vol. 117. – Issue 2. – P. 149-168.

18 Morbidelli A. Dynamical Evolution of Planetary Systems //Earth and Planetary Astrophysics - 2018. – arXiv:1803.06704v1

19 Rajib M, Badam Singh Kushvah. Orbital Dynamics of Exoplanetary Systems Kepler-62, HD 200964 and Kepler-11 //Mon. Not. R. Astron. Soc. – 2016. V.457. – P.1089–1100.

20 Chernov S.V., IvanovP.B., Papaloizou J.C.B. Dynamical tides in exoplanetary systems containing Hot Jupiters: confronting theory and observations //Mon. Not. R. Astron. Soc. – 2007. – V.470. – P.2054-2068. <u>https://doi.org/10.1093/mnras/stx1234</u>

21 Ehrenreich D., Desert J.M., Mass-loss rates for transiting exoplanets //Astronomy & Astrophysics – 2011. – V.529, May 2011. – A136.https://doi.org/10.1051/0004-6361/201016356

22 Ida S., Lin D.N.C. Toward a Deterministic Model of Planetary Formation. I. A Desert in the Mass and Semimajor Axis Distributions of Extrasolar Planets //Astrophysical Journal. – 2004. – Vol. 604. – Issue. 1. – P. 388-413.

23 Шарлье К. Небесная механика. - М.: Наука. – 1966. – 628с.

24 Мюррей К., Дермотт С. Динамика Солнечной системы /Пер. с англ. под.ред. Шевченко И.И. //М.: Физматлит. – 2010. – 588с.

25 Veras D., Hadjidemetriou J.D., Tout C.A. An Exoplanet's Response to Anisotropic Stellar Mass-Loss During Birth and Death // MNRAS. – 2013. – V.435. – P.2416 -2430. DOI: 10.1093/mnras/stt1451

26 Luger R., Barnes R., Lopez E. et al. Habitable evaporated cores: Transforming minineptunes into super-earth in the habitable zones of M dwarfs //Astrobiology. -2015. -V.15. -P.57-88.

27 Vincent Van Eylen, Saymon Albrecht. Eccentricity from transit photometry: small planets in kepler multi-planet systems have low eccentricities //Astrophysical journal. – 2015. – V.808.N2. – P.126 (20p.)

28 Robert A. Wittenmyer, Jones M.I., Horner J. at all. The Pan-Pacific Planet Search. VII. The Most Eccentric Planet Orbiting a Giant Star //The Astronomical Journal. – 2017. – V.154. – P.274 (13p.) <u>https://arxiv.org/pdf/1711.05378.pdf</u>

29 Jones M. I., Brahm R., Espinoza N.A hot Saturn on an eccentric orbit around the giant star K2-132 //Astron.&Astrophys. – 2018. – V.613. – A76. https://doi.org/10.1051/0004-6361/201731478

30 Perminov, A.S., Kuznetsov, E.D. Orbital Evolution of the Extrasolar Planetary Systems HD 39194, HD 141399, and HD 160691 // Astron. Rep. -2019. - V.63(10). - P.795-813. https://doi.org/10.1134/S1063772919090075

31 The Extrasolar Planets Encyclopaedia. http://exoplanet.eu 22.01.2019.

32 Open Exoplanet Catalogue. http://www.openexoplanetcatalogue.com 28.11.2017.

33 Karttunen H. et al., *Exoplanets* //In: Karttunen H. et al. (eds), Fundamental Astronomy, 6th Edition. – Springer. – 2017. – 548p. - ISBN-10 3662530449. DOI:10.1007/978-3-662-53045-0 22 34 Минглибаев М., Шомшекова С. Статистический анализ экзопланетных систем по спектральным классам звезд // Вестник КазНУ им. аль-Фараби. Серия физическая. (Recent Contribution to Physics). – 2019. – Т.68. № 1. – С.20-28.

35 Bonfils X., Astudillo-Defru N., Diaz R., et al. A temperate exo-Earth around a quiet M dwarf at 3.4 parsecs //Astron. &Astrophys. – 2018. – V.613. – A25. – DOI: 10.1051/0004-6361/201731973

36 Mattew T, Sarah T., <u>Horner</u> J. Properties of the single Jovian planet population and the pursuit of Solar system analogues //MNRAS. – 2018. – V.477. – P.3646-3658.

37 Martin Turbet. Two examples of how to use observations of terrestrial planets orbiting in temperate orbits around low mass stars to test key concepts of planetary habitability // SF2A – 2019. – P. 237-242. arXiv:2005.06512

38 Брауэр Д., Клеменс Дж. Методы небесной механики /Пер. с англ. под ред. Чеботарева Г.А. //М.: Мир. – 1964. – 506с.

39 Терещенко В.М. Экзопланеты: параметры и проблемы // Вестник Казахский Национальный Педагогический Университет им. Абая, Сер. Физ.-Матем. – 2004. - №3 (11). – С.86-98.

40 Brasser R et. al. A dynamical study on habitability of terrestrial exoplanets – I. Tidally evolved planet –satellite pairs // MNRAS. – 2013. – V.428. – P.1673-1685. <u>https://doi.org/10.1093/mnras/sts151</u>

41 Ellis K.M., and Murray C.D. The disturbing function in Solar System Dynamics //Icarus. – 2000. – V.147. – P.129-144.

42 Non-Stationary Dynamical Problems in Astronomy //ed. Omarov T.B. -New-York: Nova Science Publ. Inc. – 2002. – 260p. – URL: https://scholar.google.com/scholar?hl=ru&q=Omarov+T.B.&btnG

43 Лукьянов Л.Г., Ширмин Г.И. Лекции по небесной механике. Учебное пособие для науки //Алматы. – 2009. – 227с.

44 Минглибаев М.Дж. Динамика гравитирующих тел с переменными массами и размерами. Поступательное и поступательно-вращательное движение //LAPLAMBERT AcademicPublishing, Германия. – 2012. – 229с.

45 Lukyanov L.G. Dynamical evolution of stellar orbits in close binary systems with conservative masstransfer //Astron. Rep. – 2008. – V.52, 8 – P.680–693.

46 Muterspaugh, Matthew W., Konacki, Maciej et al. Observational Techniques for Detecting Planets in Binary Systems //. – ed. Nader Haghighipour, Springer. - Planets in Binary Star Systems. – 2010. – P. 77-103.

47 Bolmont E., Selsis F., et al. Water loss from terrestrial planets orbiting ultracooldwarfs:Implications for the planets of TRAPPIST-1 //MNRAS. -2017. - V.464. - P.3228.

48 Козырева В.С., Богомазов А.И. и др. Кандидат в экзоюпитеры в затменной двойной FL Lyr //Астрономический журнал. – 2015. – Т.92(11). – С.925-942.

49 Beuermann K., Hessman F.V., Dreizler S. Two planets orbiting the recently formed post-common envelope binary NN Serpentis //Astron.&Astrophys. – 2010. – V.521. – L60. – 5p. DOI: <u>https://doi.org/10.1051/0004-6361/201015472</u>

50 GuillemAnglada-Escud, Pedro J. Amad, John Barnes. et al. A terrestrial planet candidate in a temperate orbit around Proxima Centauri // Nature. – 2016. – Vol. 536. – Issue 7617. – P.437-440.

51 Eggleton P. Evolutionary processes in binary and multiple stars //Cambridge University Press. – 2006. – P.332.

52 Muijres L. E., Jorick S. Vink, A. de Koter et al. Predictions for mass-loss rates and terminal wind velocities of massive O-type stars // A&A. – 2012. – V. 537. - ID. A37.– P. 13. DOI: 10.1051/0004-6361/201015818.

53 Sepinsky J. F., Willems B., Kalogera, V. et al. Interacting Binaries with Eccentric Orbits II. Secular Orbital Evolution Due To Non-Conservative Mass Transfer // Astrophysical Journal. – 2009. – V. 702. – Issue 2.– P.1387-1392.

54 Perryman M. The Exoplanet Hand book // M. Perryman. – Cambridge University Press. – 2014. – P.424.

55 Winn J. N. Exoplanet Transits and Occultations // Universi-ty of Arizona Press. - 2011. - P.55-77.

56 Мещерский И.В. Работы по механике тел переменной массы //2-е изд. – М.: Л.: ГИТТЛ. – 1952. –281с.

57 Veras Dimitri. Explicit relations and criteria for eclipses, transits and occultation's // MNRAS. – 2019. – Vol. 483. – Issue. 3. – P.3919-3949.

58 Минглибаев М.Дж., Маемерова Г.М., Шомшекова С.А. Дифференциальные уравнения относительного движения нестационарных экзопланетных систем //Вестник КазНПУ, серия физико-математическая. – 2017. – Т.57. №1. – С.141 -147.

59 Minglibayev M. Zh., Prokopenya A.N., Mayemerova G.M., Imanova Zh.U. Three-body problem with variable masses that change anisotropically at different rates // Mathematics in Computer Science. -2017. - V.11, No.3-4. - P.383-391.

60 Холшевников К.В., Титов В.Б. Задача двух тел //Учебное пособие. — СПб.: СПбГУ. – 2007. – 180с.

61 Ипатов С.И. Миграция небесных тел в Солнечной системе // Изд-во Эдиториал УРСС. Москва. – 2000. – 320с.

62 Лидов М.Л., Вашковяк М.А. О квазиспутниковых орбитах в ограниченной эллиптической задаче трех тел // Письма в Астрономический журнал. – 1994. – Т.20, №10. – С.781-795.

63 Вашковяк М.А., Вашковяк С.Н., Емильянов Н.В. О разложении вековой части возмущающей функции взаимного притяжения спутниковой системе планеты // Астрономический вестник. – 2013. – Т.47, №1. – С.32-39.

64 Bekov A.A., Omarov T.B. The theory of orbits in non-stationary stellar systems // Astron. Astrophys. Trans. – 2003. – V.22, №2. – P.145-153.

65 Eggleton P. Evolutionary processes in binary and multiple stars //Cambridge University Press. – 2006. – 332p.

66 Minglibayev M. Zh., Mayemerova G.M. Investigation of the evolutionary equations three-body problem with variable masses // Applied Mathematical Sciences. - 2013. - Vol. 7, № 89. - P. 4439-4454.

67 Прокопеня А.Н., Минглибаев М. Дж., Маемерова Г.М. Символьные вычисления в исследованиях проблемы трех тел с переменными массами //Программирование. – 2014. – Т. 40, №2. – С.51-59.

68 Minglibayev M. Zh., Mayemerova G.M. Evolution of the orbital-plane orientations in the two-protoplanet three-body problem with variable masses // Astron.Rep. - 2014. - Vol. 58, № 9. - P. 667-667.

69 Прокопеня А.Н., МинглибаевМ.Дж., Шомшекова С.А. Применение компьютерной алгебры в исследованиях двухпланетной задачи трех тел с переменными массами //Программирование – 2019. – №2. – С.58-65. DOI:10.1134/SO132347419020092

70 ProkopenyaA., MinglibayevM., Shomshekova S. Applications of Computer Algebra in the Study of the Two-Planet Problem of Three Bodies with Variable Masses// Programming and Computer Software. – 2019. – Vol. 45. – No. 2. – P.73–80. DOI:10.1134/S0361768819020087.

71 Дубошин Г.Н. Справочное руководство по небесной механике и астродинамике // Изд. 2-е, перераб. и доп. — М.: Наука. Глав. ред. физ. -мат. лит. – 1976. – 864с.

72 Wolfram S. An elementary introduction to the Wolfram Language //Second Edition. – New York: Wolfram Media. – 2016. – 340p.

73 Прокопеня А.Н., Чичурин. Применение системы Mathematica к решению обыкновенных дифференциальных уравнений // Учеб. Пособие Мн.:БГУ. – 1999. – 265с.

74 Prokopenya A.N. Numerical-symbolic methods for searching relative equilibria in the restricted problem of four bodies // Math. Modeling and Analysis. -2018. - V.23, No. -P.507-525.

75 MikkoTuomi., Hugh R.A., et al. Bayesian search for low-mass planets around nearby M dwarfs – Estimates for occurrence rate based on global detestability statistics // MNRAS. – 2014. – V. 441. – Issuse.2. – P.1545-1569. DOI: <u>10.1093/mnras/stu358</u>

76 Субботин М.Ф. Введение в теоретическую астрономию // М.: Наука. – 1968. – 800с.

77 MinglibayevM., Shomshekova S. Analytical expressions of the perturbing functions in two planetary three - body problem with masses varyng non-isotropically when available for reactive forces // Известия НАНРК, серия физико-математическая. – 2018. – Vol. 319. №3. – С.134-163.

78 Prokopenya A., Minglibayev M., Shomshekova S. Computing Perturbations in the Two-Planetary Three-Body Problem with Masses Varying Non-Isotropically at Different Rates // Mathematics in Computer Science. -2019. - Vol. - No. - P.-. https://doi.org/10.1007/s11786-019-00437-0.

79 Дубошин Г.Н. Небесная механика. Основные задачи и методы //М.:Наука.Глав.ред.физ.-мат.лит. – 1968. – 800с.

80 Roy A.E. Orbital motion //4thedn.: Institute of Physics Publ., Bristol and Philadephia. – ISBN 0-7503-1015-6. – 2005. – 526p.

81 Минглибаев М.Дж. Динамика нестационарных гравитирующих систем // Алматы: Қазақ университеті. – 2009. – 209с.

ПРИЛОЖЕНИЯ А Разложения к разделу 3.3

1	
Δ	
$\frac{AO_0}{2} + \cos[\lambda_1 - \lambda_2] AO_1 + \cos[2(\lambda_1 - \lambda_2)] AO_2 + \cos[3(\lambda_1 - \lambda_2)] AO_3 - \frac{\cos[\lambda_1 - \lambda_2]}{2}$	$-\lambda_2$] B0 ₀ p ₁ ² 8 Λ_1
$\operatorname{Cos}[\lambda_1 + \lambda_2] \operatorname{B0}_0 p_1^2 \operatorname{Cos}[\lambda_1 - \lambda_2]^2 \operatorname{B0}_1 p_1^2 \operatorname{Cos}[\lambda_1 - \lambda_2] \operatorname{Cos}[\lambda_1 + \lambda_2] \operatorname{B0}_1 p_1^2$	2
8 Λ ₁ 4 Λ ₁ 4 Λ ₁	
$\frac{\cos\left[\lambda_{1}-\lambda_{2}\right]\cos\left[2\left(\lambda_{1}-\lambda_{2}\right)\right]\operatorname{BO}_{2}\operatorname{p}_{1}^{2}}{+}\frac{\cos\left[2\left(\lambda_{1}-\lambda_{2}\right)\right]\cos\left[\lambda_{1}+\lambda_{2}\right]\operatorname{BO}_{2}\operatorname{p}_{1}^{2}}{+}$	_
$4 \Lambda_1$ $4 \Lambda_1$	
$\frac{\cos\left[\lambda_{1}-\lambda_{2}\right]\cos\left[3\left(\lambda_{1}-\lambda_{2}\right)\right]\operatorname{B0_{3}}\operatorname{p_{1}^{\prime}}}{4}+\frac{\cos\left[3\left(\lambda_{1}-\lambda_{2}\right)\right]\cos\left[\lambda_{1}+\lambda_{2}\right]\operatorname{B0_{3}}\operatorname{p_{1}^{\prime}}}{4}$	-
$4\Lambda_1 \qquad 4\Lambda_1$ Sin[$\lambda_1 + \lambda_2$] B0 ₀ p ₁ q ₁ Cos[$\lambda_1 - \lambda_2$] Sin[$\lambda_1 + \lambda_2$] B0 ₁ p ₁ q ₁	
$\frac{4\Lambda_1}{4\Lambda_1} - \frac{4\Lambda_1}{2\Lambda_1} - \frac{4\Lambda_1}{2\Lambda_1$	
$\frac{\cos[2(\lambda_1 - \lambda_2)] \sin[\lambda_1 + \lambda_2] BO_2 p_1 q_1}{\cos[3(\lambda_1 - \lambda_2)] \sin[\lambda_1 + \lambda_2] BO_3}$	p1 q1
2 Λ ₁ 2 Λ ₁	-
$\frac{\cos\left[\lambda_1-\lambda_2\right] \operatorname{BO}_0 \operatorname{q}_1^2}{-} - \frac{\cos\left[\lambda_1+\lambda_2\right] \operatorname{BO}_0 \operatorname{q}_1^2}{-} - \frac{\cos\left[\lambda_1-\lambda_2\right]^2 \operatorname{BO}_1 \operatorname{s}_1^2}{-} - \frac{\cos\left[\lambda_1-\lambda_2\right]^2 \operatorname{BO}_1 \operatorname{s}_1^2}{-} - \cos\left[\lambda_1$	
8 Λ ₁ 8 Λ ₁ 4 Λ ₁	
$\frac{\cos\left[\lambda_1-\lambda_2\right]\cos\left[\lambda_1+\lambda_2\right]BO_1q_1^2}{2}-\frac{\cos\left[\lambda_1-\lambda_2\right]\cos\left[2\left(\lambda_1-\lambda_2\right)\right]BO_2q_1^2}{2}-\frac{\cos\left[\lambda_1-\lambda_2\right]\cos\left[2\left(\lambda_1-\lambda_2\right)\right]BO_2q_1^2}{2}-\frac{\cos\left[\lambda_1-\lambda_2\right]\cos\left[2\left(\lambda_1-\lambda_2\right)\right]BO_2q_1^2}{2}-\frac{\cos\left[\lambda_1-\lambda_2\right]\cos\left[2\left(\lambda_1-\lambda_2\right)\right]BO_2q_1^2}{2}-\frac{\cos\left[\lambda_1-\lambda_2\right]\cos\left[2\left(\lambda_1-\lambda_2\right)\right]BO_2q_1^2}{2}-\frac{\cos\left[\lambda_1-\lambda_2\right]\cos\left[2\left(\lambda_1-\lambda_2\right)\right]BO_2q_1^2}{2}-\frac{\cos\left[\lambda_1-\lambda_2\right]\cos\left[2\left(\lambda_1-\lambda_2\right)\right]BO_2q_1^2}{2}-\frac{\cos\left[\lambda_1-\lambda_2\right]\cos\left[2\left(\lambda_1-\lambda_2\right)\right]BO_2q_1^2}{2}-\frac{\cos\left[\lambda_1-\lambda_2\right]\cos\left[2\left(\lambda_1-\lambda_2\right)\right]BO_2q_1^2}{2}-\frac{\cos\left[\lambda_1-\lambda_2\right]\cos\left[2\left(\lambda_1-\lambda_2\right)\right]BO_2q_1^2}{2}-\frac{\cos\left[\lambda_1-\lambda_2\right]\cos\left[2\left(\lambda_1-\lambda_2\right)\right]BO_2q_1^2}{2}-\frac{\cos\left[\lambda_1-\lambda_2\right]\cos\left[2\left(\lambda_1-\lambda_2\right)\right]BO_2q_1^2}{2}-\frac{\cos\left[\lambda_1-\lambda_2\right]\cos\left[2\left(\lambda_1-\lambda_2\right)\right]BO_2q_1^2}{2}-\frac{\cos\left[\lambda_1-\lambda_2\right]\cos\left[2\left(\lambda_1-\lambda_2\right)\right]BO_2q_1^2}{2}-\frac{\cos\left[\lambda_1-\lambda_2\right]\cos\left[2\left(\lambda_1-\lambda_2\right)\right]BO_2q_1^2}{2}-\frac{\cos\left[\lambda_1-\lambda_2\right]\cos\left[2\left(\lambda_1-\lambda_2\right)\right]BO_2q_1^2}{2}-\cos\left[\lambda_1-\lambda_2\right]\cos\left[\lambda_1-\lambda_2\right]\cos\left[2\left(\lambda_1-\lambda_2\right)\cos\left$	
$4\Lambda_1 \qquad \qquad 4\Lambda_1 \qquad \qquad 4\Lambda_1$	
$\frac{\cos\left[2\left(\lambda_{1}-\lambda_{2}\right)\right]\cos\left[\lambda_{1}+\lambda_{2}\right]\cos\left[2\eta_{1}\right]}{4\alpha} - \frac{\cos\left[\lambda_{1}-\lambda_{2}\right]\cos\left[3\left(\lambda_{1}-\lambda_{2}\right)\right]\cos\left[3\eta_{1}\right]}{4\alpha}$	-
$4n_1 \qquad 4n_1$ $Cos[3(\lambda_1 - \lambda_2)]Cos[\lambda_1 + \lambda_2]B0_2 g_1^2 Cos[\lambda_1 - \lambda_2]B0_2 n_1^2 3Cos[3(\lambda_1 - \lambda_2)]B0_2 n_2^2 Cos[3(\lambda_1 - \lambda_2)]B0_2 n_2^2 Cos[3(\lambda_$	1 B00 n2
$\frac{665 \left[6 \left(\frac{1}{11} + \frac{1}{12} \right) \right] 655 \left[\frac{1}{11} + \frac{1}{12} \right] 253 \left[\frac{1}{11} - \frac{655 \left[\frac{1}{11} + \frac{1}{12} \right] 250 \left[\frac{1}{11} + \frac{1}{12} \right]}{4 \left[\frac{1}{11} + \frac{1}{12} \right] 255 \left[\frac{1}{11} + \frac{1}{12} \right]}$	
$\operatorname{Cos}[\lambda_1 + \lambda_2] \operatorname{B0}_0 \eta_1^2 \operatorname{Cos}[\lambda_1 - \lambda_2]^2 \operatorname{B0}_1 \eta_1^2 \operatorname{3} \operatorname{Cos}[\lambda_1 - \lambda_2] \operatorname{Cos}[\operatorname{3} \lambda_1 - \lambda_2] \operatorname{B0}_1 \eta_1^2 \operatorname{3} \operatorname{Cos}[\lambda_1 - \lambda_2] \operatorname{Cos}[\operatorname{3} \lambda_1 - \lambda_2] \operatorname{B0}_1 \eta_1^2 \operatorname{3} \operatorname{Cos}[\lambda_1 - \lambda_2] \operatorname{Cos}[\operatorname{3} \lambda_1 - \lambda_2] \operatorname{B0}_1 \eta_1^2 \operatorname{3} \operatorname{Cos}[\lambda_1 - \lambda_2] \operatorname{Cos}[\operatorname{3} \lambda_1 - \lambda_2] \operatorname{B0}_1 \eta_1^2 \operatorname{3} \operatorname{Cos}[\lambda_1 - \lambda_2] \operatorname{Cos}[\operatorname{3} \lambda_1 - \lambda_2] \operatorname{B0}_1 \eta_1^2 \operatorname{3} \operatorname{Cos}[\lambda_1 - \lambda_2] \operatorname{Cos}[\operatorname{3} \lambda_1 - \lambda_2] \operatorname{Cos}[\lambda_1 - \lambda_2] \operatorname{B0}_1 \eta_1^2 \operatorname{3} \operatorname{Cos}[\lambda_1 - \lambda_2] \operatorname{Cos}[\operatorname{3} \lambda_1 - \lambda_2] \operatorname{Cos}[\operatorname{3} \lambda_1 - \lambda_2] \operatorname{Cos}[\lambda_1 - \lambda_2] C$	$0_1 \eta_1^2$
16 Δ ₁ 2 Δ ₁ 8 Δ ₁	
$\frac{\cos\left[\lambda_1-\lambda_2\right]\cos\left[\lambda_1+\lambda_2\right]\mathrm{BO}_1\eta_1^2}{\cos\left[\lambda_1-\lambda_2\right]\cos\left[2\left(\lambda_1-\lambda_2\right)\right]\mathrm{BO}_2\eta_1^2}=0$	
8 Λ ₁ 2 Λ ₁	
$\frac{3\cos\left[2\left(\lambda_{1}-\lambda_{2}\right)\right]\cos\left[3\lambda_{1}-\lambda_{2}\right]\operatorname{BO}_{2}\eta_{1}^{2}}{-\frac{\cos\left[2\left(\lambda_{1}-\lambda_{2}\right)\right]\cos\left[\lambda_{1}+\lambda_{2}\right]\operatorname{BO}_{2}\eta_{1}^{2}}{-\frac{\cos\left[2\left(\lambda_{1}-\lambda_{2}\right)\right]\cos\left[\lambda_{1}+\lambda_{2}\right]\operatorname{BO}_{2}\eta_{1}^{2}}}$	$\frac{\eta_1^2}{2}$ –
8 Λ ₁ 8 Λ ₁	
$\frac{\cos\left[\lambda_{1}-\lambda_{2}\right]\cos\left[3\left(\lambda_{1}-\lambda_{2}\right)\right]\operatorname{B0}_{3}\eta_{1}^{\prime}}{2}-\frac{3\cos\left[3\left(\lambda_{1}-\lambda_{2}\right)\right]\cos\left[3\lambda_{1}-\lambda_{2}\right]\operatorname{B0}_{3}\eta_{1}^{\prime}}{2}$	$\frac{\eta_1^2}{\eta_1^2}$ -
$2\Lambda_1$ $8\Lambda_1$	
$\frac{\cos[5(\chi_1 - \chi_2)]\cos[\chi_1 + \chi_2]\cos[\chi_1 + \chi_2]\cos[\chi_1}{8\chi_1} + \frac{15\cos[\chi_1]}{16\chi_1} + \frac{5\cos[2\chi_1]\cos[\chi_1]}{16\chi_1} - \frac{16\chi_1}{16\chi_1}$	
$9 \cos[2\lambda_1 - 2\lambda_2] \cos n^2$ $3 \cos[4\lambda_1 - 2\lambda_2] \cos n^2$ $27 \cos[2\lambda_2] \cos n^2$	
$\frac{16 \Lambda_1}{32 \Lambda_1} - \frac{11 \Lambda_2}{32 \Lambda_1} - 11$	
$27 \cos [\lambda_1 - 3 \lambda_2] CO_1 \eta_1^2 9 \cos [3 \lambda_1 - 3 \lambda_2] CO_1 \eta_1^2 3 \cos [5 \lambda_1 - 3 \lambda_2] CO_1$	η_1^2
<u>32</u> Λ ₁ <u>16</u> Λ ₁ <u>32</u> Λ ₁	+
$\frac{21\cos\left[\lambda_1-\lambda_2\right]\cos\left[\eta_1^2\right]}{15\cos\left[3\lambda_1-\lambda_2\right]\cos\left[\eta_1^2\right]} = \frac{9\cos\left[\lambda_1+\lambda_2\right]\cos\left[\eta_1^2\right]}{9\cos\left[\lambda_1+\lambda_2\right]\cos\left[\eta_1^2\right]} = \frac{9\cos\left[\lambda_1+\lambda_2\right]\cos\left[\eta_1^2\right]}{15\cos\left[\eta_1^2\right]} = \frac{15\cos\left[\eta_1^2\right]}{15\cos\left[\eta_1^2\right]} = \frac{15\cos\left[\eta_1^2\right]}{15\cos\left[\eta_1^2\right$	$9 \operatorname{CO}_2 \eta_1^2$
16 Λ ₁ 32 Λ ₁ 32 Λ ₁	16 Л ₁
$\frac{15 \cos \left[2 \lambda_{1}\right] \operatorname{CO}_{2} \eta_{1}^{2}}{9 \cos \left[4 \lambda_{1}-4 \lambda_{2}\right] \operatorname{CO}_{2} \eta_{1}^{2}} - \frac{9 \cos \left[4 \lambda_{1}-4 \lambda_{2}\right] \operatorname{CO}_{2} \eta_{1}^{2}}{9 \cos \left[4 \lambda_{1}-4 \lambda_{2}\right] \operatorname{CO}_{2} \eta_{1}^{2}}$	_
16 Λ ₁ 32 Λ ₁ 16 Λ ₁	
$\frac{3\cos[6\lambda_1 - 4\lambda_2]\cos_2\eta_1^2}{\cos(2\lambda_1 - 2\lambda_2)\cos_2\eta_1^2} + \frac{15\cos[2\lambda_1 - 2\lambda_2]\cos_2\eta_1^2}{\cos(2\lambda_1 - 2\lambda_2)\cos_2\eta_1^2} + \frac{9\cos[4\lambda_1 - 2\lambda_2]\cos_2\eta_1^2}{\cos(2\lambda_1 - 2\lambda_2)\cos_2\eta_1^2} + \frac{9\cos[4\lambda_1 - 2\lambda_2]\cos_2\eta_1^2}{\cos(2\lambda_1 - 2\lambda_2)\cos_2\eta_1^2} + \frac{12\cos(2\lambda_1 - 2\lambda_2)\cos_2\eta_1^2}{\cos(2\lambda_1 - 2\lambda_2)\cos_2\eta_1^2} + \frac{12\cos(2\lambda_1 - 2\lambda_2)\cos_2\eta_1^2} + \frac{12\cos(2\lambda_1 - 2\lambda_2)\cos_2\eta_1^2}{\cos(2\lambda_1 - 2\lambda_2)\cos_2\eta_1^2} + \frac{12\cos(2\lambda_1 - 2\lambda_2)\cos_2\eta_1^2}{\cos(2\lambda_1 - 2\lambda_2)\cos_2\eta_1^2} + \frac{12\cos(2\lambda_1 - 2\lambda_2)\cos_2\eta_1^2}{\cos(2\lambda_1 - 2\lambda_2)\cos_2\eta_1^2} + \frac{12\cos(2\lambda_1 - 2\lambda_2)\cos_2\eta_1^2} + 12\cos(2\lambda_1 - 2\lambda_2)\cos$	$\frac{1}{2} \eta_1^2 +$
$32 \Lambda_1$ $8 \Lambda_1$ $16 \Lambda_1$	
$\frac{9 \cos[2 \lambda_2] \cos[2 \lambda_1]}{16 \lambda_1} = \frac{27 \cos[3 \lambda_1 - 5 \lambda_2] \cos[3 \lambda_1]}{32 \lambda_1} = \frac{9 \cos[5 \lambda_1 - 5 \lambda_2] \cos[3 \lambda_1]}{16 \lambda_1} = \frac{16 \lambda_2}{16 \lambda_1}$	
$3 \cos[7 \lambda_1 - 5 \lambda_2] CO_2 n_1^2 = 9 \cos[\lambda_1 - 3 \lambda_2] CO_2 n_2^2 = 15 \cos[3 \lambda_1 - 3 \lambda_2] CO_2$	n_{1}^{2}
$\frac{1}{32\Lambda_1} + \frac{1}{16\Lambda_1} + \frac{1}{8\Lambda_1} + \frac{1}{8\Lambda_1} + \frac{1}{8\Lambda_1} + \frac{1}{16\Lambda_1} + \frac{1}{8\Lambda_1} + $	+ +

 $\frac{9\cos\left[5\lambda_{1}-3\lambda_{2}\right]\cos\eta_{1}^{2}}{9\cos\left[\lambda_{1}-\lambda_{2}\right]\cos\eta_{1}^{2}} = \frac{9\cos\left[\lambda_{1}-\lambda_{2}\right]\cos\eta_{1}^{2}}{27\cos\left[3\lambda_{1}-\lambda_{2}\right]\cos\eta_{1}^{2}}$ $16 \Lambda_1$ 16 A₁ 32 A1 $\frac{3\cos[\lambda_1 + \lambda_2] \cos\eta_1^2}{32\Lambda_1} + \frac{3a_1^2 \cos_{\eta}\gamma_1^2 \eta_1^2}{8a_2^2 \gamma_2^2 \Lambda_1} - \frac{3\cos[2\lambda_1] a_1^2 \cos_{\eta}\gamma_1^2 \eta_1^2}{8a_2^2 \gamma_2^2 \Lambda_1} + \frac{3\cos[\lambda_1 - \lambda_2] a_1^2 \cos_{\eta}\gamma_1^2}{4a_2^2 \gamma_2^2 \Lambda_1}$ $\frac{3\cos[3\lambda_1 - \lambda_2] a_1^2 \operatorname{CO}_1 \gamma_1^2 \eta_1^2}{-3\cos[\lambda_1 + \lambda_2] a_1^2 \operatorname{CO}_1 \gamma_1^2 \eta_1^2} + \frac{3\cos[2\lambda_1 - 2\lambda_2] a_1^2 \operatorname{CO}_2 \gamma_1^2 \eta_1^2}{-3\cos[\lambda_1 - 2\lambda_2] a_1^2 \operatorname{CO}_2 \gamma_1^2 \eta_1^2} + \frac{3\cos[2\lambda_1 - 2\lambda_2] a_1^2 \operatorname{CO}_2 \gamma_1^2 \eta_1^2}{-3\cos[\lambda_1 - 2\lambda_2] a_1^2 \operatorname{CO}_2 \gamma_1^2 \eta_1^2} + \frac{3\cos[\lambda_1 - 2\lambda_2] a_1^2 \operatorname{CO}_2 \gamma_1^2 \eta_1^2}{-3\cos[\lambda_1 - 2\lambda_2] a_1^2 \operatorname{CO}_2 \gamma_1^2 \eta_1^2} + \frac{3\cos[\lambda_1 - 2\lambda_2] a_1^2 \operatorname{CO}_2 \gamma_1^2 \eta_1^2}{-3\cos[\lambda_1 - 2\lambda_2] a_1^2 \operatorname{CO}_2 \gamma_1^2 \eta_1^2} + \frac{3\cos[\lambda_1 - 2\lambda_2] a_1^2 \operatorname{CO}_2 \gamma_1^2 \eta_1^2}{-3\cos[\lambda_1 - 2\lambda_2] a_1^2 \operatorname{CO}_2 \gamma_1^2 \eta_1^2} + \frac{3\cos[\lambda_1 - 2\lambda_2] a_1^2 \operatorname{CO}_2 \gamma_1^2 \eta_1^2}{-3\cos[\lambda_1 - 2\lambda_2] a_1^2 \operatorname{CO}_2 \gamma_1^2 \eta_1^2} + \frac{3\cos[\lambda_1 - 2\lambda_2] a_1^2 \operatorname{CO}_2 \gamma_1^2 \eta_1^2}{-3\cos[\lambda_1 - 2\lambda_2] a_1^2 \operatorname{CO}_2 \gamma_1^2 \eta_1^2} + \frac{3\cos[\lambda_1 - 2\lambda_2] a_1^2 \operatorname{CO}_2 \gamma_1^2 \eta_1^2}{-3\cos[\lambda_1 - 2\lambda_2] a_1^2 \operatorname{CO}_2 \gamma_1^2 \eta_1^2} + \frac{3\cos[\lambda_1 - 2\lambda_2] a_1^2 \operatorname{CO}_2 \gamma_1^2 \eta_1^2}{-3\cos[\lambda_1 - 2\lambda_2] a_1^2 \operatorname{CO}_2 \gamma_1^2 \eta_1^2} + \frac{3\cos[\lambda_1 - 2\lambda_2] a_1^2 \operatorname{CO}_2 \gamma_1^2 \eta_1^2}{-3\cos[\lambda_1 - 2\lambda_2] a_1^2 \operatorname{CO}_2 \gamma_1^2 \eta_1^2} + \frac{3\cos[\lambda_1 - 2\lambda_2] a_1^2 \operatorname{CO}_2 \gamma_1^2 \eta_1^2}{-3\cos[\lambda_1 - 2\lambda_2] a_1^2 \operatorname{CO}_2 \gamma_1^2 \eta_1^2} + \frac{3\cos[\lambda_1 - 2\lambda_2] a_1^2 \operatorname{CO}_2 \gamma_1^2 \eta_1^2}{-3\cos[\lambda_1 - 2\lambda_2] a_1^2 \operatorname{CO}_2 \gamma_1^2 \eta_1^2} + \frac{3\cos[\lambda_1 - 2\lambda_2] a_1^2 \operatorname{CO}_2 \gamma_1^2 \eta_1^2}{-3\cos[\lambda_1 - 2\lambda_2] a_1^2 \operatorname{CO}_2 \gamma_1^2 \eta_1^2} + \frac{3\cos[\lambda_1 - 2\lambda_2] a_1^2 \operatorname{CO}_2 \gamma_1^2 \eta_1^2}{-3\cos[\lambda_1 - 2\lambda_2] a_1^2 \operatorname{CO}_2 \gamma_1^2 \eta_1^2} + \frac{3\cos[\lambda_1 - 2\lambda_2] a_1^2 \operatorname{CO}_2 \gamma_1^2 \eta_1^2}{-3\cos[\lambda_1 - 2\lambda_2] a_1^2 \operatorname{CO}_2 \gamma_1^2 \eta_1^2} + \frac{3\cos[\lambda_1 - 2\lambda_2] a_1^2 \operatorname{CO}_2 \gamma_1^2 \eta_1^2}{-3\cos[\lambda_1 - 2\lambda_2] a_1^2 \operatorname{CO}_2 \gamma_1^2 \eta_1^2} + \frac{3\cos[\lambda_1 - 2\lambda_2] a_1^2 \operatorname{CO}_2 \gamma_1^2 \eta_1^2}{-3\cos[\lambda_1 - 2\lambda_2] a_1^2 \operatorname{CO}_2 \gamma_1^2 \eta_1^2} + \frac{3\cos[\lambda_1 - 2\lambda_2] a_1^2 \operatorname{CO}_2 \gamma_1^2 \eta_1^2}{-3\cos[\lambda_1 - 2\lambda_2] a_1^2 \operatorname{CO}_2 \gamma_1^2 \eta_1^2} + \frac{3\cos[\lambda_1 - 2\lambda_2] a_1^2 \operatorname{CO}_2 \gamma_1^2 \eta_1^2}{-3\cos[\lambda_1 - 2\lambda_2] a_1^2 \operatorname{CO}_2 \gamma_1^2 \eta_1^2} + \frac{3\cos[\lambda_1 - 2\lambda_2] a_1^2 \operatorname{CO}_2 \gamma_1^2 \eta_1^2}{-3\cos[\lambda_1 - 2\lambda_2] a_1^2 \operatorname{CO}_2 \gamma_1^2 + \frac{3\cos[\lambda_1 - 2\lambda_2] a_1^2 \operatorname{CO}_2 \gamma_1^2 + \frac{3\cos[\lambda_1 - 2\lambda_2] a_1^2 \operatorname{CO}_2 \gamma_1^2 + \frac{3\cos[\lambda_1 - 2\lambda_2] a_1^2 + \frac{3$ $8 a_2^2 \gamma_2^2 \Lambda_1$ $8 a_2^2 \gamma_2^2 \Lambda_1$ $4 a_{2}^{2} \chi_{2}^{2} \Lambda_{1}$ $\frac{3\cos[4\lambda_1 - 2\lambda_2] a_1^2 C O_2 \gamma_1^2 \eta_1^2}{8 a_2^2 \gamma_2^2 \Lambda_1} - \frac{3\cos[2\lambda_2] a_1^2 C O_2 \gamma_1^2 \eta_1^2}{8 a_2^2 \gamma_2^2 \Lambda_1} - \frac{3\cos[\lambda_1 - 3\lambda_2] a_1^2 C O_3 \gamma_1^2 \eta_1^2}{8 a_2^2 \gamma_2^2 \Lambda_1} +$ $8 a_2^2 \gamma_2^2 \Lambda_1$ $8 a_2^2 \gamma_2^2 \Lambda_1$ $8 a_2^2 \gamma_2^2 \Lambda_1$ $\frac{3\cos[3\lambda_1 - 3\lambda_2] a_1^2 C O_3 \gamma_1^2 \eta_1^2}{3\cos[5\lambda_1 - 3\lambda_2] a_1^2 C O_3 \gamma_1^2 \eta_1^2} - \frac{3\cos[5\lambda_1 - 3\lambda_2] a_1^2 C O_3 \gamma_1^2 \eta_1^2}{3\cos[5\lambda_1 - 3\lambda_2] a_1^2 C O_3 \gamma_1^2 \eta_1^2} - \frac{3a_1 B O_0 \gamma_1 \eta_1^2}{3\cos[5\lambda_1 - 3\lambda_2] a_1^2 C O_3 \gamma_1^2 \eta_1^2} - \frac{3a_1 B O_0 \gamma_1 \eta_1^2}{3\cos[5\lambda_1 - 3\lambda_2] a_1^2 C O_3 \gamma_1^2 \eta_1^2} - \frac{3a_1 B O_0 \gamma_1 \eta_1^2}{3\cos[5\lambda_1 - 3\lambda_2] a_1^2 C O_3 \gamma_1^2 \eta_1^2} - \frac{3a_1 B O_0 \gamma_1 \eta_1^2}{3\cos[5\lambda_1 - 3\lambda_2] a_1^2 C O_3 \gamma_1^2 \eta_1^2} - \frac{3a_1 B O_0 \gamma_1 \eta_1^2}{3\cos[5\lambda_1 - 3\lambda_2] a_1^2 C O_3 \gamma_1^2 \eta_1^2} - \frac{3a_1 B O_0 \gamma_1 \eta_1^2}{3\cos[5\lambda_1 - 3\lambda_2] a_1^2 C O_3 \gamma_1^2 \eta_1^2} - \frac{3a_1 B O_0 \gamma_1 \eta_1^2}{3\cos[5\lambda_1 - 3\lambda_2] a_1^2 C O_3 \gamma_1^2 \eta_1^2} - \frac{3a_1 B O_0 \gamma_1 \eta_1^2}{3\cos[5\lambda_1 - 3\lambda_2] a_1^2 C O_3 \gamma_1^2 \eta_1^2} - \frac{3a_1 B O_0 \gamma_1 \eta_1^2}{3\cos[5\lambda_1 - 3\lambda_2] a_1^2 C O_3 \gamma_1^2 \eta_1^2} - \frac{3a_1 B O_0 \gamma_1 \eta_1^2}{3\cos[5\lambda_1 - 3\lambda_2] a_1^2 C O_3 \gamma_1^2 \eta_1^2} - \frac{3a_1 B O_0 \gamma_1 \eta_1^2}{3\cos[5\lambda_1 - 3\lambda_2] a_1^2 C O_3 \gamma_1^2 \eta_1^2} - \frac{3a_1 B O_0 \gamma_1 \eta_1^2}{3\cos[5\lambda_1 - 3\lambda_2] a_1^2 C O_3 \gamma_1^2 \eta_1^2} - \frac{3a_1 B O_0 \gamma_1 \eta_1^2}{3\cos[5\lambda_1 - 3\lambda_2] a_1^2 C O_3 \gamma_1^2 \eta_1^2} - \frac{3a_1 B O_0 \gamma_1 \eta_1^2}{3\cos[5\lambda_1 - 3\lambda_2] a_1^2 C O_3 \gamma_1^2 \eta_1^2} - \frac{3a_1 B O_0 \gamma_1 \eta_1^2}{3\cos[5\lambda_1 - 3\lambda_2] a_1^2 C O_3 \gamma_1^2 \eta_1^2} - \frac{3a_1 B O_0 \gamma_1 \eta_1^2}{3\cos[5\lambda_1 - 3\lambda_2] a_1^2 C O_3 \gamma_1^2 \eta_1^2} - \frac{3a_1 B O_0 \gamma_1 \eta_1^2}{3\cos[5\lambda_1 - 3\lambda_2] a_1^2 C O_3 \gamma_1^2 \eta_1^2} - \frac{3a_1 B O_0 \gamma_1 \eta_1^2}{3\cos[5\lambda_1 - 3\lambda_2] a_1^2 C O_3 \gamma_1^2 \eta_1^2} - \frac{3a_1 B O_0 \gamma_1 \eta_1^2}{3\cos[5\lambda_1 - 3\lambda_2] a_1^2 C O_3 \gamma_1^2 \eta_1^2} - \frac{3a_1 B O_0 \gamma_1 \eta_1^2}{3\cos[5\lambda_1 - 3\lambda_2] a_1^2 C O_3 \gamma_1^2 \eta_1^2} - \frac{3a_1 B O_0 \gamma_1 \eta_1^2}{3\cos[5\lambda_1 - 3\lambda_2] a_1^2 C O_3 \gamma_1^2 \eta_1^2} - \frac{3a_1 B O_0 \gamma_1 \eta_1^2}{3\cos[5\lambda_1 - 3\lambda_2] a_1^2 C O_3 \gamma_1^2 \eta_1^2} - \frac{3a_1 B O_0 \gamma_1 \eta_1^2}{3\cos[5\lambda_1 - 3\lambda_2] a_1^2 C O_3 \gamma_1^2 \eta_1^2} - \frac{3a_1 B O_0 \gamma_1 \eta_1^2}{3\cos[5\lambda_1 - 3\lambda_2] a_1^2 C O_0 \gamma_1^2 \eta_1^2} - \frac{3a_1 B O_0 \gamma_1 \eta_1^2}{3\cos[5\lambda_1 - 3\lambda_2] a_1^2 C O_0 \gamma_1^2} - \frac{3a_1 B O_0 \gamma_1 \eta_1^2}{3\cos[5\lambda_1 - 3\lambda_2] \alpha_1^2} - \frac{3a_1 B O_0 \gamma_1 \eta_1^2}{3\cos[5\lambda_1 - 3\lambda_2] \alpha_1^2} - \frac{3a_1 B O_0 \gamma_1^2 \gamma_1^2}{3\cos[5\lambda_1 - 3\lambda_2] \alpha_1^2} - \frac{3a_1 B O_0 \gamma_1^2}{3\cos[5\lambda_1 - 3\lambda_2] \alpha_1^2} - \frac{3a_1 B$ $8 a_2^2 \gamma_2^2 \Lambda_1$ $8 a_2 \gamma_2 \Lambda_1$ $4 a_{3}^{2} \gamma_{3}^{2} \Lambda_{1}$ $\frac{\cos[2\lambda_1] a_1 B 0_0 \gamma_1 \eta_1^2}{-3 \cos[\lambda_1 - \lambda_2] a_1 B 0_1 \gamma_1 \eta_1^2} - \frac{\cos[2\lambda_1] \cos[\lambda_1 - \lambda_2] a_1 B 0_1 \gamma_1 \eta_1^2}{-3 \cos[\lambda_1 - \lambda_2] a_1 B 0_1 \gamma_1 \eta_1^2}$ $8 a_2 \gamma_2 \Lambda_1$ $4 a_2 \gamma_2 \Lambda_1$ $4 a_2 \chi_2 \Lambda_1$ $\frac{3 \operatorname{Cos}\left[2 \left(\lambda_{1}-\lambda_{2}\right)\right] \operatorname{a_{1}}\operatorname{B0}_{2} \gamma_{1} \eta_{1}^{2}}{\operatorname{Cos}\left[2 \lambda_{1}\right] \operatorname{Cos}\left[2 \left(\lambda_{1}-\lambda_{2}\right)\right] \operatorname{a_{1}}\operatorname{B0}_{2} \gamma_{1} \eta_{1}^{2}}$ $4 a_2 \gamma_2 \Lambda_1$ $4 a_2 \gamma_2 \Lambda_1$ $\frac{3\cos[3(\lambda_1-\lambda_2)]a_1B0_3\gamma_1\eta_1^2}{2} - \frac{\cos[2\lambda_1]\cos[3(\lambda_1-\lambda_2)]a_1B0_3\gamma_1\eta_1^2}{2} - \frac{\cos[2\lambda_1]\cos[3(\lambda_1-\lambda_2)]a_1B0_3\gamma_1\eta_1^2}{2} - \frac{\cos[2\lambda_1]\cos[3(\lambda_1-\lambda_2)]a_1B0_3\gamma_1\eta_1^2}{2} - \frac{\cos[2\lambda_1]\cos[3(\lambda_1-\lambda_2)]a_1B0_3\gamma_1\eta_1^2}{2} - \frac{\cos[2\lambda_1]\cos[3(\lambda_1-\lambda_2)]a_1B0_3\gamma_1\eta_1^2}{2} - \frac{\cos[2\lambda_1]\cos[3(\lambda_1-\lambda_2)]a_1B0_3\gamma_1\eta_1^2}{2} - \frac{\cos[3(\lambda_1-\lambda_2)]a_1B0_3\gamma_1\eta_1^2}{2} - \frac{\cos$ $4 a_2 \gamma_2 \Lambda_1$ $4 a_2 \gamma_2 \Lambda_1$ $\frac{3\cos[\lambda_1-\lambda_2]a_1\cos[\gamma_1\eta_1^2]}{2\cos[\lambda_1-\lambda_2]a_1\cos[\gamma_1\eta_1^2]} + \frac{3\cos[3\lambda_1-\lambda_2]a_1\cos[\gamma_1\eta_1^2]}{2\cos[\lambda_1+\lambda_2]a_1\cos[\gamma_1\eta_1^2]} + \frac{9\cos[\lambda_1+\lambda_2]a_1\cos[\gamma_1\eta_1^2]}{2\cos[\lambda_1+\lambda_2]a_1\cos[\gamma_1\eta_1^2]} = \frac{3\cos[3\lambda_1-\lambda_2]a_1\cos[\gamma_1\eta_1^2]}{2\cos[\lambda_1+\lambda_2]a_1\cos[\gamma_1\eta_1^2]} + \frac{3\cos[\lambda_1+\lambda_2]a_1\cos[\gamma_1\eta_1^2]}{2\cos[\lambda_1+\lambda_2]a_1\cos[\gamma_1\eta_1^2]} = \frac{3\cos[3\lambda_1-\lambda_2]a_1\cos[\gamma_1\eta_1^2]}{2\cos[\lambda_1+\lambda_2]a_1\cos[\gamma_1\eta_1^2]} = \frac{3\cos[3\lambda_1-\lambda_2]a_1\cos[\gamma_1\eta_1^2]}{2\cos[\gamma_1\eta_1^2]} = \frac{3\cos[3\lambda_1-\lambda_2]a_1\cos[\gamma_1\eta_1^2]}{2\cos[\gamma_1\eta_1^2]} = \frac{3\cos[\beta_1\lambda_1-\lambda_2]a_1\cos[\gamma_1\eta_1^2]}{2\cos[\gamma_1\eta_1^2]} = \frac{3\cos[\beta_1\lambda_1^2]}{2\cos[\gamma_1\eta_1^2]} = \frac{3\cos[\beta_1\lambda_1^2]}{2\cos[\gamma_1\lambda_1^2]} = \frac$ $4 a_2 \gamma_2 \Lambda_1$ $8 a_2 \gamma_2 \Lambda_1$ $8 a_2 \gamma_2 \Lambda_1$ $\frac{3 a_1 C 0_1 \gamma_1 \eta_1^2}{4 + 3 C 0 s [2 \lambda_1] a_1 C 0_1 \gamma_1 \eta_1^2} - \frac{3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \eta_1^2}{4 + 3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \eta_1^2} - \frac{3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \eta_1^2}{4 + 3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \eta_1^2} - \frac{3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \eta_1^2}{4 + 3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \eta_1^2} - \frac{3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \eta_1^2}{4 + 3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \eta_1^2} - \frac{3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \eta_1^2}{4 + 3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \eta_1^2} - \frac{3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \eta_1^2}{4 + 3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \eta_1^2} - \frac{3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \eta_1^2}{4 + 3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \eta_1^2} - \frac{3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \eta_1^2}{4 + 3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \eta_1^2} - \frac{3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \eta_1^2}{4 + 3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \eta_1^2} - \frac{3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \eta_1^2}{4 + 3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \eta_1^2} - \frac{3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \eta_1^2}{4 + 3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \eta_1^2} - \frac{3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \eta_1^2}{4 + 3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \eta_1^2} - \frac{3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \eta_1^2}{4 + 3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \eta_1^2} - \frac{3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \eta_1^2}{4 + 3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \eta_1^2} - \frac{3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \eta_1^2}{4 + 3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \eta_1^2} - \frac{3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \eta_1^2}{4 + 3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \eta_1^2} - \frac{3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \eta_1^2}{4 + 3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \eta_1^2} - \frac{3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \eta_1^2}{4 + 3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \eta_1^2}$ $4 a_2 \gamma_2 \Lambda_1$ $4 a_2 \gamma_2 \Lambda_1$ $4 a_2 \gamma_2 \Lambda_1$ $\frac{3\cos\left[4\lambda_{1}-2\lambda_{2}\right]a_{1}\cos\left[\gamma_{1}\eta_{1}^{2}\right]}{8a_{2}\gamma_{2}\Lambda_{1}}+\frac{9\cos\left[2\lambda_{2}\right]a_{1}\cos\left[\gamma_{1}\eta_{1}^{2}\right]}{8a_{2}\gamma_{2}\Lambda_{1}}+\frac{9\cos\left[\lambda_{1}-3\lambda_{2}\right]a_{1}\cos\left[\gamma_{1}\eta_{1}^{2}\right]}{8a_{2}\gamma_{2}\Lambda_{1}} \frac{3\cos[3\lambda_1-3\lambda_2]a_1\operatorname{CO}_2\gamma_1\eta_1^2}{3\cos[5\lambda_1-3\lambda_2]a_1\operatorname{CO}_2\gamma_1\eta_1^2} - \frac{3\cos[5\lambda_1-3\lambda_2]a_1\operatorname{CO}_2\gamma_1\eta_1^2}{3\cos[\lambda_1-\lambda_2]a_1\operatorname{CO}_2\gamma_1\eta_1^2} - \frac{3\cos[\lambda_1-\lambda_2]a_1\operatorname{CO}_2\gamma_1\eta_1^2}{3\cos[\lambda_1-\lambda_2]a_1\operatorname{CO}_2\gamma_1\eta_1^2} - \frac{3\cos[\lambda_1-\lambda_2]a_1\operatorname{CO}_2\gamma_1\eta_1^2} - \frac{3\cos[\lambda_1-\lambda_2]a_1\operatorname{CO}_2\gamma_1\eta_1^2} - \frac{3\cos[\lambda_1-\lambda_2]a_1\operatorname{CO}_2\gamma_1\eta_1^2} - \frac{3\cos[\lambda_1-\lambda_2]a_1\operatorname{CO}_2\gamma_1\eta_1^2} - \frac{3\cos[\lambda_1-\lambda_2]a_1\operatorname{CO}_2\gamma_1\eta_1^2} - \frac{3\cos[\lambda_1-\lambda_2]a_$ 8 a₂ γ₂ Λ₁ $4 a_2 \gamma_2 \Lambda_1$ $4 a_2 \gamma_2 \Lambda_1$ $\frac{9\cos[3\lambda_1-\lambda_2]a_1\cos_2\gamma_1\eta_1^2}{2} - \frac{3\cos[\lambda_1+\lambda_2]a_1\cos_2\gamma_1\eta_1^2}{2} + \frac{9\cos[2\lambda_1-4\lambda_2]a_1\cos_3\gamma_1\eta_1^2}{2}$ $8 a_2 \gamma_2 \Lambda_1$ $8 a_2 \gamma_2 \Lambda_1$ $8 a_2 \gamma_2 \Lambda_1$ $\frac{3\cos\left[4\lambda_{1}-4\lambda_{2}\right]}{a_{1}\cos\left[4\lambda_{1}-4\lambda_{2}\right]} = \frac{3\cos\left[6\lambda_{1}-4\lambda_{2}\right]}{a_{1}\cos\left[3\lambda_{1}-4\lambda_{2}\right]} = \frac{3\cos\left[6\lambda_{1}-4\lambda_{2}\right]}{a_{1}\cos\left[4\lambda_{1}-4\lambda_{2}\right]} = \frac{3\cos\left[6\lambda_{1}-4\lambda_{2}\right]}{a_{1}\cos\left[6\lambda_{1}-4\lambda_{2}\right]} = \frac{3\cos\left[6\lambda_{1}-4\lambda_{2}\right]}{a_{1}\cos\left[4\lambda_{1}-4\lambda_{2}\right]} = \frac{3\cos\left[6\lambda_{1}-4\lambda_{2}\right]}{a_{1}\cos\left[4\lambda_{1}-4\lambda_{2}\right]} = \frac{3\cos\left[6\lambda_{1}-4\lambda_{2}\right]}{a_{1}\cos\left[4\lambda_{1}-4\lambda_{2}\right]} = \frac{3\cos\left[6\lambda_{1}-4\lambda_{2}\right]}{a_{1}\cos\left[4\lambda_{1}-4\lambda_{2}\right]} = \frac{3\cos\left[6\lambda_{1}-4\lambda_{2}\right]}{a_{1}\cos\left[4\lambda_{1}-4\lambda_{2}\right]} = \frac{3\cos\left[6\lambda_{1}-4\lambda_{2}\right]}{a_{1}\cos\left[4\lambda_{1}-4\lambda_{2}\right]} = \frac{3\cos\left[4\lambda_{1}-4\lambda_{2}\right]}{a_{1}\cos\left[4\lambda_{1}-4\lambda_{2}\right]} = \frac{3\cos\left[4\lambda_{1}-4\lambda_{2}\right]}{a_{1}\cos\left[4\lambda_{1}-4\lambda_{2}$ $8 a_2 \gamma_2 \Lambda_1$ $4 a_2 \gamma_2 \Lambda_1$ $\frac{3\cos[2\lambda_1 - 2\lambda_2] a_1 C 0_3 \gamma_1 \eta_1^2}{4 a_2 \gamma_2 \Lambda_1} + \frac{9\cos[4\lambda_1 - 2\lambda_2] a_1 C 0_3 \gamma_1 \eta_1^2}{8 a_2 \gamma_2 \Lambda_1} - \frac{3\cos[2\lambda_2] a_1 C 0_3 \gamma_1 \eta_1^2}{8 a_2 \gamma_2 \Lambda_1}$ $\frac{\operatorname{Sin}[2\lambda_1 - \lambda_2] \operatorname{BO}_0 \eta_1}{+} + \frac{3 \operatorname{Sin}[\lambda_2] \operatorname{BO}_0 \eta_1}{+} - \frac{\operatorname{Cos}[\lambda_1 - \lambda_2] \operatorname{Sin}[2\lambda_1 - \lambda_2] \operatorname{BO}_1 \eta_1}{+} + \frac{3 \operatorname{Sin}[\lambda_2] \operatorname{Sin}[\lambda_1 - \lambda_2] \operatorname{Sin}[2\lambda_1 - \lambda_2] \operatorname{Sin}[\lambda_1 - \lambda_2] \operatorname{Sin}[$ $4\sqrt{\Lambda_1}$ $4\sqrt{\Delta_1}$ $2\sqrt{\Lambda_1}$ $\frac{3\cos[\lambda_1-\lambda_2]\sin[\lambda_2]B0_1\eta_1}{2} = \frac{\cos[2(\lambda_1-\lambda_2)]\sin[2\lambda_1-\lambda_2]B0_2\eta_1}{2}.$ $2\sqrt{\Lambda_1}$ $2\sqrt{\Lambda_1}$ $\frac{3\cos[2(\lambda_1 - \lambda_2)]\sin[\lambda_2]BO_2\eta_1}{-\cos[3(\lambda_1 - \lambda_2)]\sin[2\lambda_1 - \lambda_2]BO_3\eta_1} + \frac{\cos[3(\lambda_1 - \lambda_2)]\sin[2\lambda_1 - \lambda_2]BO_3\eta_1}{-\cos[3(\lambda_1 - \lambda_2)]BO_3\eta_1} + \frac{\cos[3(\lambda_1 - \lambda_2)]BO_3\eta_1}{-\cos[3(\lambda_1 - \lambda_2)]BO_3\eta_1} + \frac{\cos[3(\lambda_1 - \lambda_2)]BO_3\eta_1} + \frac{\cos[3(\lambda_1 - \lambda_2)]BO_3\eta_1}{-\cos[3(\lambda_1 - \lambda_2)]BO_3\eta_1} + \frac{\cos[3(\lambda_1 - \lambda_2)]BO_3\eta_1} + \frac$ $2\sqrt{\Lambda_1}$ $2\sqrt{\Lambda_1}$ $\frac{3\cos[3(\lambda_1-\lambda_2)]\sin[\lambda_2]BO_3\eta_1}{\sin[\lambda_1]a_1BO_0\gamma_1\eta_1} = \frac{\sin[\lambda_1]a_1BO_0\gamma_1\eta_1}{\sin[\lambda_1]a_1BO_0\gamma_1\eta_1} = \frac{\sin[\lambda_1]a_1BO_0\gamma_1\eta_1}{\sin[\lambda_1]a_1BO_0\gamma_1\eta_1}$ $2\sqrt{\Lambda_1}$ $2 a_2 \gamma_2 \sqrt{\Lambda_1}$ $\cos[\lambda_1 - \lambda_2] \sin[\lambda_1] a_1 B 0_1 \gamma_1 \eta_1 \qquad \cos[2(\lambda_1 - \lambda_2)] \sin[\lambda_1] a_1 B 0_2 \gamma_1 \eta_1$ $a_2 \gamma_2 \sqrt{\Lambda_1}$ $a_2 \chi_2 \sqrt{\Lambda_1}$ $\frac{\cos[3(\lambda_1 - \lambda_2)] \sin[\lambda_1] a_1 B 0_3 \gamma_1 \eta_1}{-} - \frac{\sin[\lambda_1] \sin[\lambda_2] B 0_0 p_2^2}{-} -$ 4 An $a_2 \gamma_2 \sqrt{\Lambda_1}$ $\frac{\cos[\lambda_1 - \lambda_2] \sin[\lambda_1] \sin[\lambda_2] B0_1 p_2^2}{\cos[2 (\lambda_1 - \lambda_2)] \sin[\lambda_1] \sin[\lambda_2] B0_2 p_2^2}$ 2. 12 2. 12 $\frac{\cos[3(\lambda_1 - \lambda_2)]\sin[\lambda_1]\sin[\lambda_2]B0_3p_2^2}{\sin[\lambda_1 + \lambda_2]B0_0p_2q_2} = \frac{\sin[\lambda_1 + \lambda_2]B0_0p_2q_2}{\sin[\lambda_1 + \lambda_2]B0_0p_2q_2} = \frac{\sin[\lambda_1 + \lambda_2]B0_0p_2q_2}{\sin[\lambda_1 + \lambda_2]B0_0p_2q_2}$ $2 \Lambda_2$ $4 \Lambda_2$

106

$\cos[\lambda_1 - \lambda_2] \sin[\lambda_1 + \lambda_2]$	$λ_2$] B0 ₁ p ₂ q ₂ Cos[2 ($λ_1$	$-\lambda_2$)] Sin $[\lambda_1 + \lambda_2]$	B0 ₂ p ₂ q ₂
2 A ₂		2 A ₂	
$\cos[3(\lambda_1 - \lambda_2)]$ Sin[2]	$\lambda_1 + \lambda_2$] B0 ₃ p ₂ q ₂ Cos[2	λ_1] Cos[λ_2] B0 ₀ q ₂ ²	
2 Λ2		4 Λ ₂	
$\cos[\lambda_1] \cos[\lambda_1 - \lambda_2] $	$\cos[\lambda_2] BO_1 q_2^2 Cos[\lambda_1]$	$\cos [2 (\lambda_1 - \lambda_2)] Cos$	$\cos[\lambda_2] B0_2 q_2^2$
2 Λ ₂		2 Λ ₂	
$\cos[\lambda_1] \cos[3(\lambda_1 - \lambda_2)]$	(2)]Cos $[\lambda_2]$ B0 $_3$ q $_2^2$ 3Co	$s[\lambda_1 - 3\lambda_2] B0_0 \eta_2^2$	$\cos [\lambda_1 - \lambda_2] B0_0 \eta_2^2$
2 A ₂		16 Λ ₂	- <u>4 A2</u> -
$\cos [\lambda_1 + \lambda_2] B0_0 \eta_2^2 = 3$	$3 \cos [\lambda_1 - 3 \lambda_2] \cos [\lambda_1 - $	λ_2] B0 ₁ η_2^2 Cos[λ_1	$[-\lambda_2]^2 B0_1 \eta_2^2$
	8 Δ2		2 Δ ₂
$\cos [\lambda_1 - \lambda_2] \cos [\lambda_1 + \lambda_2]$	λ_2] BO ₁ η_2^2 3 Cos [$\lambda_1 - 3$]	λ_2] Cos[2 ($\lambda_1 - \lambda_2$)] B0 ₂ η ²
8 Δ2		8 Δ2	
$\cos[\lambda_1 - \lambda_2] \cos[2(\lambda_1$	$(-\lambda_2)$] B0 ₂ η_2^2 Cos[2 (2)	$\lambda_1 - \lambda_2$) Cos $[\lambda_1 + \lambda_2]$	$_{2}$] B0 ₂ η_{3}^{2}
2. ^2		8 ^2	
$3 \cos[\lambda_1 - 3 \lambda_2] \cos[3$	$(\lambda_1 - \lambda_2)$] B0 ₃ η_2^2 Cos[$\lambda_1 - \lambda_2 \cos[3(\lambda_1 - \lambda_2)]$	$(\lambda_2) \mid B0_3 \mid \eta_2^2$
<u>8 Δ</u> 2		2 Δ2	
$\cos[3(\lambda_1 - \lambda_2)] \cos[3$	$\lambda_1 + \lambda_2 B0_3 n_3^2 = 15 C0_0 n_1^2$	² 27 Cos[2 λ ₁] C0	n n 3
8 ^2	$\frac{1}{16}$ + $\frac{1}{16}$ + $\frac{1}{16}$	32 Δ2	
$3 \cos[2\lambda_1 - 4\lambda_2] CO_0$	$\eta_{3}^{2} = 9 \cos \left[2 \lambda_{1} - 2 \lambda_{2} \right] C(1)$	$D_0 \eta_3^2 = 9 \cos[2\lambda_2] ($	CO0 n3
32 Δ2	<u>16 Δ2</u>	+ 16 Δ2	
$3 \cos[3\lambda_1 - 5\lambda_2] C0_1 i$	$\eta_{1}^{2} = \frac{15 \cos [\lambda_{1} - 3 \lambda_{2}] C0}{15 \cos [\lambda_{1} - 3 \lambda_{2}] C0}$	$_{1}\eta_{2}^{2}$ 9 Cos [3 λ_{1} - 3	$3 \lambda_2] CO_1 \eta_2^2$
32 A2	+ <u>32 A2</u>	16/	<u></u> +
$21 \cos \left[\lambda_1 - \lambda_2\right] CO_1 \eta_2^2$	$27 \cos[3\lambda_1 - \lambda_2] C0_1 r$	$\frac{12}{12}$ 9 Cos $[\lambda_1 + \lambda_2]$ C	$20_1 \eta_3^2 9 C 0_2 \eta_3^2$
16 Δ2	- <u>32 A</u> 2		$\frac{1}{16} - \frac{2}{16} + \frac{1}{16} $
$9 \cos[2\lambda_1] C_2 \eta_2^2 = 3$	$\cos[4 \lambda_1 - 6 \lambda_2] CO_2 \eta_2^2$	$9 \cos \left[2 \lambda_1 - 4 \lambda_2\right]$	$CO_2 \eta_2^2$
<u>16 Λ₂</u>	32 A2 +	16 Λ ₂	
$9 \cos \left[4 \lambda_1 - 4 \lambda_2 \right] CO_2 \pi$	η_{3}^{2} 15 Cos [2 λ_{1} - 2 λ_{2}] ($CO_2 \eta_3^2 = 27 \cos[4 \lambda_1]$	$-2 \lambda_2] CO_2 \eta_3^2$
16 Λ2	- +		
$15 \cos [2 \lambda_2] CO_2 \eta_2^2$	$3 \cos [5 \lambda_1 - 7 \lambda_2] CO_3 \eta_2^2$	9 Cos[3 λ ₁ – 5 λ ₂]	$CO_3 \eta_2^2$
	32 Λ2	+ <u>16 Λ</u> 2	
$9\cos[5\lambda_1 - 5\lambda_2] CO_3$	$\eta_2^2 = 27 \cos [\lambda_1 - 3 \lambda_2] C0$	₃ η ₂ ² 15 Cos[3 λ ₁ -	3 λ ₂] CO ₃ η ²
16 A2	 32 л ₂		
27 Cos[5 λ ₁ - 3 λ ₂] CO ₃	$\eta_2^2 = 9 \operatorname{Cos} [\lambda_1 - \lambda_2] \operatorname{CO}_3 \eta_2^3$	η_2^2 9 Cos [3 $\lambda_1 - \lambda_2$]] C0 ₃ η_2^2
32 A2	16 Л ₂	+16 Λ ₂	
$3 \cos [\lambda_1 + \lambda_2] CO_3 \eta_2^2$	$3 a_2 BO_0 \gamma_2 \eta_2^2 Cos [2 \lambda]$	$[a_2] a_2 BO_0 \gamma_2 \eta_2^2 = 3 C$	$\cos [\lambda_1 - \lambda_2] a_2 BO_1 \gamma_2 \eta_2^2$
32 A2	$8a_1\gamma_1\Lambda_2 = 8$		4 a ₁ γ ₁ Λ ₂
$\cos [\lambda_1 - \lambda_2] \cos [2 \lambda_2]$	$a_2 BO_1 \gamma_2 \eta_2^2 = 3 Cos [2 ($	$\lambda_1 - \lambda_2)] a_2 BO_2 \gamma_2 \eta$	22
4 a ₁ γ ₁ Λ ₂		$4 a_1 \gamma_1 \Lambda_2$	
$\cos[2(\lambda_1 - \lambda_2)] \cos[2$	$2 \lambda_2$] $a_2 BO_2 \gamma_2 \eta_2^2$ 3 Cos	$[3 (\lambda_1 - \lambda_2)] a_2 B0_3$	$\gamma_2 \eta_2^2$
4 a ₁ γ ₁ /		$4 a_1 \gamma_1 \Lambda_2$	
$\cos[3(\lambda_1 - \lambda_2)] \cos[2$	$2 \lambda_2$] $a_2 BO_3 \gamma_2 \eta_2^2$ 3 Cos	$[\lambda_1 - 3 \lambda_2] a_2 CO_0 \gamma_2$	η_2^2
4 a ₁ γ ₁ /		8 a ₁ γ ₁ Λ ₂	
$3 \cos [\lambda_1 - \lambda_2] a_2 CO_0 \gamma$	$\frac{1}{2} \eta_2^2$ 9 Cos [$\lambda_1 + \lambda_2$] a ₂ C	$CO_0 \gamma_2 \eta_2^2 = 3 a_2 CO_1 \gamma_2$	$x_2 \eta_2^2$
$4 a_1 \gamma_1 \Lambda_2$	+ 8 a ₁ γ ₁ Λ ₂	4 a ₁ γ ₁	+ Δ ₂
$9 \cos [2 \lambda_1] a_2 CO_1 \gamma_2 \eta$	$\frac{2}{2} = \frac{3 \cos [2 \lambda_1 - 4 \lambda_2] a_2}{2}$	$\frac{\operatorname{CO}_1 \gamma_2 \eta_2^2}{\operatorname{3} \operatorname{Cos} [2]}$	$\lambda_1 - 2 \lambda_2$] a ₂ CO ₁ $\gamma_2 \eta_2^2$.
8 a1 X1 A2	8 a ₁ γ ₁ Λ ₂		4 a ₁ γ ₁ Λ ₂ +

$$\begin{array}{l} \frac{3 \cos[2 \lambda_2]}{4 a_1 \gamma_1 \Lambda_2} &= \frac{3 \cos[3 \lambda_1 - 5 \lambda_2]}{8 a_1 \gamma_1 \Lambda_2} \frac{2 \cos[2 \gamma_2 \gamma_1^2]}{8 a_1 \gamma_1 \Lambda_2} + \frac{9 \cos[3 \lambda_1 - 3 \lambda_2]}{8 a_1 \gamma_1 \Lambda_2} \frac{9 \cos[3 \lambda_1 - 3 \lambda_2]}{8 a_1 \gamma_1 \Lambda_2} \frac{9 \cos[3 \lambda_1 - 3 \lambda_2]}{8 a_1 \gamma_1 \Lambda_2} \frac{9 \cos[3 \lambda_1 - 3 \lambda_2]}{8 a_1 \gamma_1 \Lambda_2} \frac{9 \cos[3 \lambda_1 - 3 \lambda_2]}{8 a_1 \gamma_1 \Lambda_2} \frac{9 \cos[3 \lambda_1 - 3 \lambda_2]}{8 a_1 \gamma_1 \Lambda_2} \frac{9 \cos[4 \lambda_1 - 4 \lambda_2]}{8 a_1 \gamma_1 \Lambda_2} \frac{9 \cos[4 \lambda_1 - 4 \lambda_2]}{8 a_1 \gamma_1 \Lambda_2} \frac{9 \cos[4 \lambda_1 - 4 \lambda_2]}{8 a_1 \gamma_1 \Lambda_2} \frac{9 \cos[4 \lambda_1 - 4 \lambda_2]}{8 a_1 \gamma_1 \Lambda_2} \frac{9 \cos[4 \lambda_1 - 4 \lambda_2]}{8 a_1 \gamma_1 \Lambda_2} \frac{9 \cos[4 \lambda_1 - 4 \lambda_2]}{8 a_1 \gamma_1 \Lambda_2} \frac{9 \cos[4 \lambda_1 - 4 \lambda_2]}{8 a_1 \gamma_1 \Lambda_2} \frac{9 \cos[4 \lambda_1 - 4 \lambda_2]}{8 a_1 \gamma_1 \Lambda_2} \frac{9 \cos[4 \lambda_1 - 4 \lambda_2]}{8 a_1 \gamma_1 \Lambda_2} \frac{9 \cos[4 \lambda_1 - 4 \lambda_2]}{8 a_1 \gamma_1 \Lambda_2} \frac{9 \cos[4 \lambda_1 - 4 \lambda_2]}{8 a_1 \gamma_1 \Lambda_2} \frac{9 \cos[4 \lambda_1 - 2 \lambda_2]}{8 a_1^2 \gamma_1 \Lambda_2} \frac{9 \cos[4 \lambda_1 - 2 \lambda_2]}{8 a_1^2 \gamma_1 \Lambda_2} \frac{9 \cos[4 \lambda_1 - 2 \lambda_2]}{8 a_1^2 \gamma_1 \Lambda_2} \frac{9 \cos[4 \lambda_1 - 2 \lambda_2]}{8 a_1^2 \gamma_1 \Lambda_2} \frac{9 \cos[4 \lambda_1 - 2 \lambda_2]}{8 a_1^2 \gamma_1 \Lambda_2} \frac{9 \cos[4 \lambda_1 - 2 \lambda_2]}{8 a_1^2 \gamma_1 \Lambda_2} \frac{9 \cos[4 \lambda_1 - 2 \lambda_2]}{8 a_1^2 \gamma_1 \Lambda_2} \frac{9 \cos[4 \lambda_1 - 2 \lambda_2]}{8 a_1^2 \gamma_1^2 \Lambda_2} \frac{9 \cos[4 \lambda_1 - 2 \lambda_2]}{8 a_1^2 \gamma_1^2 \Lambda_2} \frac{9 \cos[4 \lambda_1 - 2 \lambda_2]}{8 a_1^2 \gamma_1^2 \Lambda_2} \frac{9 \cos[4 \lambda_1 - 3 \lambda_2]}{8 a_1^2 \gamma_1^2 \Lambda_2} \frac{9 \cos[4 \lambda_1 - 3 \lambda_2]}{8 a_1^2 \gamma_1^2 \Lambda_2} \frac{9 \cos[4 \lambda_1 - 3 \lambda_2]}{8 a_1^2 \gamma_1^2 \Lambda_2} \frac{9 \cos[4 \lambda_1 - 3 \lambda_2]}{8 a_1^2 \gamma_1^2 \Lambda_2} \frac{9 \cos[4 \lambda_1 - 3 \lambda_2]}{8 a_1^2 \gamma_1^2 \Lambda_2} \frac{9 \cos[4 \lambda_1 - 3 \lambda_2]}{8 a_1^2 \gamma_1^2 \Lambda_2} \frac{9 \cos[4 \lambda_1 - 3 \lambda_2]}{8 a_1^2 \gamma_1^2 \Lambda_2} \frac{9 \cos[4 \lambda_1 - 3 \lambda_2]}{8 a_1^2 \gamma_1^2 \Lambda_2} \frac{9 \cos[4 \lambda_1 - 3 \lambda_2]}{8 a_1^2 \gamma_1^2 \Lambda_2} \frac{9 \cos[4 \lambda_1 - 3 \lambda_2]}{8 a_1^2 \gamma_1^2 \Lambda_2} \frac{9 \cos[4 \lambda_1 - 3 \lambda_2]}{8 a_1^2 \gamma_1^2 \Lambda_2} \frac{9 \cos[4 \lambda_1 - 3 \lambda_2]}{8 a_1^2 \gamma_1^2 \Lambda_2} \frac{9 \cos[4 \lambda_1 - 3 \lambda_2]}{8 a_1^2 \gamma_1^2 \Lambda_2} \frac{9 \cos[4 \lambda_1 - 3 \lambda_2]}{8 a_1^2 \gamma_1^2 \Lambda_2} \frac{9 \cos[4 \lambda_1 - 3 \lambda_2]}{8 a_1^2 \gamma_1^2 \Lambda_2} \frac{9 \cos[4 \lambda_1 - 3 \lambda_2]}{8 \cos[2 \lambda_1 - \lambda_2]} \frac{9 \cos[4 \lambda_1 - 3 \lambda_2]}{8 \cos[2 \lambda_1 - \lambda_2]} \frac{9 \cos[4 \lambda_1 - 3 \lambda_2]}{8 \cos[2 \lambda_1 - \lambda_2]} \frac{9 \cos[4 \lambda_1 - 3 \lambda_2]}{8 \cos[2 \lambda_1 - \lambda_2]} \frac{9 \cos[4 \lambda_1 - 3 \lambda_2]}{8 \cos[2 \lambda_1 - \lambda_2]} \frac{9 \cos[4 \lambda_1 - 3 \lambda_2]}{8 \cos[2 \lambda_1 - \lambda_2]} \frac{9 \cos[4 \lambda_1 - 3 \lambda_2]}{8 \cos[2 \lambda_1 - \lambda_2]} \frac{9 \cos[4 \lambda_1$$
$\frac{3\cos\left[2\lambda_2\right]\mathrm{B0_0}\eta_1\eta_2}{+} \underbrace{9\cos\left[\lambda_1-\lambda_2\right]\mathrm{B0_1}}$	$\frac{\eta_1 \eta_2}{\eta_1 \eta_2} + \frac{3 \cos \left[2 \lambda_1\right] \cos \left[\lambda_1 - \lambda_2\right] B \theta_1 \eta_1 \eta_2}{\eta_1 \eta_2} + \frac{3 \cos \left[2 \lambda_1\right] \cos \left[\lambda_1 - \lambda_2\right] B \theta_1 \eta_1 \eta_2}{\eta_1 \eta_2} + \frac{3 \cos \left[2 \lambda_1\right] \cos \left[\lambda_1 - \lambda_2\right] B \theta_1 \eta_1 \eta_2}{\eta_1 \eta_2} + \frac{3 \cos \left[2 \lambda_1\right] \cos \left[\lambda_1 - \lambda_2\right] B \theta_1 \eta_1 \eta_2}{\eta_1 \eta_2} + \frac{3 \cos \left[2 \lambda_1\right] \cos \left[\lambda_1 - \lambda_2\right] B \theta_1 \eta_1 \eta_2}{\eta_1 \eta_2} + \frac{3 \cos \left[2 \lambda_1\right] \cos \left[\lambda_1 - \lambda_2\right] B \theta_1 \eta_1 \eta_2}{\eta_1 \eta_2} + \frac{3 \cos \left[2 \lambda_1\right] \cos \left[\lambda_1 - \lambda_2\right] B \theta_1 \eta_1 \eta_2}{\eta_1 \eta_2} + \frac{3 \cos \left[2 \lambda_1\right] \cos \left[\lambda_1 - \lambda_2\right] B \theta_1 \eta_1 \eta_2}{\eta_1 \eta_2} + \frac{3 \cos \left[\lambda_1 - \lambda_2\right] B \theta_1 \eta_1 \eta_2}{\eta_1 \eta_2} + \frac{3 \cos \left[\lambda_1 - \lambda_2\right] B \theta_1 \eta_1 \eta_2}{\eta_1 \eta_2} + \frac{3 \cos \left[\lambda_1 - \lambda_2\right] B \theta_1 \eta_1 \eta_2}{\eta_1 \eta_2} + \frac{3 \cos \left[\lambda_1 - \lambda_2\right] B \theta_1 \eta_1 \eta_2}{\eta_1 \eta_2} + \frac{3 \cos \left[\lambda_1 - \lambda_2\right] B \theta_1 \eta_1 \eta_2}{\eta_1 \eta_2} + \frac{3 \cos \left[\lambda_1 - \lambda_2\right] B \theta_1 \eta_1 \eta_2}{\eta_1 \eta_2} + \frac{3 \cos \left[\lambda_1 - \lambda_2\right] B \theta_1 \eta_1 \eta_2}{\eta_1 \eta_2} + \frac{3 \cos \left[\lambda_1 - \lambda_2\right] B \theta_1 \eta_1 \eta_2}{\eta_1 \eta_2} + \frac{3 \cos \left[\lambda_1 - \lambda_2\right] B \theta_1 \eta_1 \eta_2}{\eta_1 \eta_2} + \frac{3 \cos \left[\lambda_1 - \lambda_2\right] B \theta_1 \eta_1 \eta_2}{\eta_1 \eta_2} + \frac{3 \cos \left[\lambda_1 - \lambda_2\right] B \theta_1 \eta_1 \eta_2}{\eta_1 \eta_2} + \frac{3 \cos \left[\lambda_1 - \lambda_2\right] B \theta_1 \eta_1 \eta_2}{\eta_1 \eta_2} + \frac{3 \cos \left[\lambda_1 - \lambda_2\right] B \theta_1 \eta_2}{\eta_1 \eta_2} + \frac{3 \cos \left[\lambda_1 - \lambda_2\right] B \theta_1 \eta_2}{\eta_1 \eta_2} + \frac{3 \cos \left[\lambda_1 - \lambda_2\right] B \theta_1 \eta_2}{\eta_1 \eta_2} + \frac{3 \cos \left[\lambda_1 - \lambda_2\right] B \theta_1 \eta_2}{\eta_1 \eta_2} + \frac{3 \cos \left[\lambda_1 - \lambda_2\right] B \theta_1 \eta_2}{\eta_1 \eta_2} + \frac{3 \cos \left[\lambda_1 - \lambda_2\right] B \theta_1 \eta_2}{\eta_1 \eta_2} + \frac{3 \cos \left[\lambda_1 - \lambda_2\right] B \theta_1 \eta_2}{\eta_1 \eta_2} + \frac{3 \cos \left[\lambda_1 - \lambda_2\right] B \theta_1 \eta_2}{\eta_1 \eta_2} + \frac{3 \cos \left[\lambda_1 - \lambda_2\right] B \theta_1 \eta_2}{\eta_1 \eta_2} + \frac{3 \cos \left[\lambda_1 - \lambda_2\right] B \theta_1 \eta_2}{\eta_1 \eta_2} + \frac{3 \cos \left[\lambda_1 - \lambda_2\right] B \theta_1 \eta_2}{\eta_1 \eta_2} + \frac{3 \cos \left[\lambda_1 - \lambda_2\right] B \theta_1 \eta_2}{\eta_2} + \frac{3 \cos \left[\lambda_1 - \lambda_2\right] B \theta_1 \eta_2}{\eta_2} + \frac{3 \cos \left[\lambda_1 - \lambda_2\right] B \theta_1 \eta_2}{\eta_2} + \frac{3 \cos \left[\lambda_1 - \lambda_2\right] B \theta_1 \eta_2}{\eta_2} + \frac{3 \cos \left[\lambda_1 - \lambda_2\right] B \theta_2}{\eta_2} + 3 \cos \left[\lambda_1 - \lambda_2\right$
$8 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$ $4 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$	$4\sqrt{\Lambda_1}\sqrt{\Lambda_2}$
$\frac{\cos\left[\lambda_{1}-\lambda_{2}\right]\cos\left[2\left(\lambda_{1}-\lambda_{2}\right)\right]\mathrm{B0}_{1}\eta_{1}\eta_{2}}{+}\frac{1}{2}$	$\frac{3 \cos \left[\lambda_1 - \lambda_2\right] \cos \left[2 \lambda_2\right] B \theta_1 \eta_1 \eta_2}{+} +$
$4\sqrt{\Lambda_1}\sqrt{\Lambda_2}$	$4\sqrt{\Lambda_1}\sqrt{\Lambda_2}$
$\frac{9\cos[2(\lambda_1 - \lambda_2)] \operatorname{BO}_2 \eta_1 \eta_2}{4} + \frac{3\cos[2\lambda_1]}{4}$	$\cos \left[2 \left(\lambda_1 - \lambda_2\right)\right] B 0_2 \eta_1 \eta_2 +$
$4\sqrt{\Lambda_1}\sqrt{\Lambda_2}$	$4\sqrt{\Lambda_1}\sqrt{\Lambda_2}$
$\frac{\cos\left[2\left(\lambda_{1}-\lambda_{2}\right)\right]^{2}\operatorname{BO}_{2}\eta_{1}\eta_{2}}{+}\frac{3\cos\left[2\left(\lambda_{1}-\lambda_{2}\right)\right]^{2}\operatorname{BO}_{2}\eta_{1}\eta_{2}}{+}\frac{3\cos\left[2\left(\lambda_{1}-\lambda_{2}\right)\right]^{2}\operatorname{BO}_{2}\eta_{1}\eta_{2}}{+}\frac{3\cos\left[2\left(\lambda_{1}-\lambda_{2}\right)\right]^{2}\operatorname{BO}_{2}\eta_{1}\eta_{2}}{+}\frac{3\cos\left[2\left(\lambda_{1}-\lambda_{2}\right)\right]^{2}\operatorname{BO}_{2}\eta_{1}\eta_{2}}{+}\frac{3\cos\left[2\left(\lambda_{1}-\lambda_{2}\right)\right]^{2}\operatorname{BO}_{2}\eta_{1}\eta_{2}}{+}\frac{3\cos\left[2\left(\lambda_{1}-\lambda_{2}\right)\right]^{2}\operatorname{BO}_{2}\eta_{1}\eta_{2}}{+}\frac{3\cos\left[2\left(\lambda_{1}-\lambda_{2}\right)\right]^{2}\operatorname{BO}_{2}\eta_{1}\eta_{2}}{+}\frac{3\cos\left[2\left(\lambda_{1}-\lambda_{2}\right)\right]^{2}\operatorname{BO}_{2}\eta_{1}\eta_{2}}{+}\frac{3\cos\left[2\left(\lambda_{1}-\lambda_{2}\right)\right]^{2}\operatorname{BO}_{2}\eta_{1}\eta_{2}}{+}\frac{3\cos\left[2\left(\lambda_{1}-\lambda_{2}\right)\right]^{2}\operatorname{BO}_{2}\eta_{1}\eta_{2}}{+}\frac{3\cos\left[2\left(\lambda_{1}-\lambda_{2}\right)\right]^{2}\operatorname{BO}_{2}\eta_{1}\eta_{2}}{+}\frac{3\cos\left[2\left(\lambda_{1}-\lambda_{2}\right)\right]^{2}\operatorname{BO}_{2}\eta_{1}\eta_{2}}{+}\frac{3\cos\left[2\left(\lambda_{1}-\lambda_{2}\right)\right]^{2}\operatorname{BO}_{2}\eta_{1}\eta_{2}}{+}\frac{3\cos\left[2\left(\lambda_{1}-\lambda_{2}\right)\right]^{2}\operatorname{BO}_{2}\eta_{1}\eta_{2}}{+}\frac{3\cos\left[2\left(\lambda_{1}-\lambda_{2}\right)\right]^{2}\operatorname{BO}_{2}\eta_{1}\eta_{2}}{+}\frac{3\cos\left[2\left(\lambda_{1}-\lambda_{2}\right)\right]^{2}\operatorname{BO}_{2}\eta_{1}\eta_{2}}{+}\frac{3\cos\left[2\left(\lambda_{1}-\lambda_{2}\right)\right]^{2}\operatorname{BO}_{2}\eta_{1}\eta_{2}}{+}\frac{3\cos\left[2\left(\lambda_{1}-\lambda_{2}\right)\right]^{2}\operatorname{BO}_{2}\eta_{1}\eta_{2}}{+}\frac{3\cos\left[2\left(\lambda_{1}-\lambda_{2}\right)\right]^{2}\operatorname{BO}_{2}\eta_{2}}{+}\frac{3\cos\left[2\left(\lambda_{1}-\lambda_{2}\right)\right]^{2}\operatorname{BO}_{2}\eta_{2}}{+}\frac{3\cos\left[2\left(\lambda_{1}-\lambda_{2}\right)\right]^{2}\operatorname{BO}_{2}\eta_{2}}{+}\frac{3\cos\left[2\left(\lambda_{1}-\lambda_{2}\right)\right]^{2}\operatorname{BO}_{2}\eta_{2}}{+}\frac{3\cos\left[2\left(\lambda_{1}-\lambda_{2}\right)\right]^{2}\operatorname{BO}_{2}\eta_{2}}{+}\frac{3\cos\left[2\left(\lambda_{1}-\lambda_{2}\right)\right]^{2}\operatorname{BO}_{2}\eta_{2}}{+}\frac{3\cos\left[2\left(\lambda_{1}-\lambda_{2}\right)\right]^{2}\operatorname{BO}_{2}\eta_{2}}{+}\frac{3\cos\left[2\left(\lambda_{1}-\lambda_{2}\right)\right]^{2}\operatorname{BO}_{2}\eta_{2}}{+}\frac{3\cos\left[2\left(\lambda_{1}-\lambda_{2}\right)\right]^{2}\operatorname{BO}_{2}\eta_{2}}{+}\frac{3\cos\left[2\left(\lambda_{1}-\lambda_{2}\right)\right]^{2}\operatorname{BO}_{2}\eta_{2}}{+}\frac{3\cos\left[2\left(\lambda_{1}-\lambda_{2}\right)\right]^{2}\operatorname{BO}_{2}\eta_{2}}{+}\frac{3\cos\left[2\left(\lambda_{1}-\lambda_{2}\right)\right]^{2}\operatorname{BO}_{2}\eta_{2}}{+}\frac{3\cos\left[2\left(\lambda_{1}-\lambda_{2}\right)\right]^{2}\operatorname{BO}_{2}\eta_{2}}{+}\frac{3\cos\left[2\left(\lambda_{1}-\lambda_{2}\right)\right]^{2}\operatorname{BO}_{2}\eta_{2}}{+}\frac{3\cos\left[2\left(\lambda_{1}-\lambda_{2}\right)\right]^{2}\operatorname{BO}_{2}\eta_{2}}{+}\frac{3\cos\left[2\left(\lambda_{1}-\lambda_{2}\right)\right]^{2}\operatorname{BO}_{2}\eta_{2}}{+}\frac{3\cos\left[2\left(\lambda_{1}-\lambda_{2}\right)\right]^{2}\operatorname{BO}_{2}\eta_{2}}{+}\frac{3\cos\left[2\left(\lambda_{1}-\lambda_{2}\right)\right]^{2}\operatorname{BO}_{2}\eta_{2}}{+}\frac{3\cos\left[2\left(\lambda_{1}-\lambda_{2}\right)\right]^{2}\operatorname{BO}_{2}\eta_{2}}{+}\frac{3\cos\left[2\left(\lambda_{1}-\lambda_{2}\right)\right]^{2}\operatorname{BO}_{2}\eta_{2}}{+}\frac{3\cos\left[2\left(\lambda_{1}-\lambda_{2}\right)\right]^{2}\operatorname{BO}_{2}\eta_{2}}{+}\frac{3\cos\left[2\left(\lambda_{1}-\lambda_{2}\right)\right]^{2}\operatorname{BO}_{2}\eta_{2}}{+}\frac{3\cos\left[2\left(\lambda_{1}-\lambda_{2}\right)\right]^{2}\operatorname{BO}_{2}\eta_{2}}{+}\frac{3\cos\left[2\left(\lambda_{1}-\lambda_{$	$-\lambda_2$)] Cos[2 λ_2] B0 ₂ $\eta_1\eta_2$ +
$4\sqrt{\Lambda_1}\sqrt{\Lambda_2}$	$4\sqrt{\Lambda_1}\sqrt{\Lambda_2}$
$\frac{9\cos[3(\lambda_1-\lambda_2)]B0_3\eta_1\eta_2}{4} + \frac{3\cos[2\lambda_1]}{4}$	$\cos[3(\lambda_1 - \lambda_2)] B0_3 \eta_1 \eta_2 +$
$4\sqrt{\Lambda_1}\sqrt{\Lambda_2}$	$4\sqrt{\Delta_1}\sqrt{\Delta_2}$
$\frac{\cos\left[2\left(\lambda_{1}-\lambda_{2}\right)\right]\cos\left[3\left(\lambda_{1}-\lambda_{2}\right)\right]\operatorname{BO}_{3}\eta_{1}\eta_{2}}{\operatorname{BO}_{3}\eta_{1}\eta_{2}}$	$\frac{2}{2} + \frac{3 \cos[3 (\lambda_1 - \lambda_2)] \cos[2 \lambda_2] B_{0_3} \eta_1 \eta_2}{4} + \frac{3 \cos[3 (\lambda_1 - \lambda_2)] \cos[2 \lambda_2] B_{0_3} \eta_1 \eta_2}{4} + \frac{3 \cos[3 (\lambda_1 - \lambda_2)] \cos[2 \lambda_2] B_{0_3} \eta_1 \eta_2}{4} + \frac{3 \cos[3 (\lambda_1 - \lambda_2)] \cos[2 \lambda_2] B_{0_3} \eta_1 \eta_2}{4} + \frac{3 \cos[3 (\lambda_1 - \lambda_2)] \cos[3 (\lambda_1 - \lambda_2)] \cos[2 \lambda_2] B_{0_3} \eta_1 \eta_2}{4} + \frac{3 \cos[3 (\lambda_1 - \lambda_2)] \cos[3 (\lambda_1 - \lambda_2)] \cos[3 (\lambda_1 - \lambda_2)] \cos[3 (\lambda_1 - \lambda_2)]}{4} + \frac{3 \cos[3 (\lambda_1 - \lambda_2)] \cos[3 (\lambda_1 - \lambda_2)] \cos[3 (\lambda_1 - \lambda_2)]}{4} + \frac{3 \cos[3 (\lambda_1 - \lambda_2)] \cos[3 (\lambda_1 - \lambda_2)]}{4} + \frac{3 \cos[3 (\lambda_1 - \lambda_2)] \cos[3 (\lambda_1 - \lambda_2)]}{4} + \frac{3 \cos[3 (\lambda_1 - \lambda_2)] \cos[3 (\lambda_1 - \lambda_2)]}{4} + \frac{3 \cos[3 (\lambda_1 - \lambda_2)] \cos[3 (\lambda_1 - \lambda_2)]}{4} + \frac{3 \cos[3 (\lambda_1 - \lambda_2)] \cos[3 (\lambda_1 - \lambda_2)]}{4} + \frac{3 \cos[3 (\lambda_1 - \lambda_2)] \cos[3 (\lambda_1 - \lambda_2)]}{4} + \frac{3 \cos[3 (\lambda_1 - \lambda_2)] \cos[3 (\lambda_1 - \lambda_2)]}{4} + \frac{3 \cos[3 (\lambda_1 - \lambda_2)] \cos[3 (\lambda_1 - \lambda_2)]}{4} + \frac{3 \cos[3 (\lambda_1 - \lambda_2)] \cos[3 (\lambda_1 - \lambda_2)]}{4} + \frac{3 \cos[3 (\lambda_1 - \lambda_2)] \cos[3 (\lambda_1 - \lambda_2)]}{4} + \frac{3 \cos[3 (\lambda_1 - \lambda_2)] \cos[3 (\lambda_1 - \lambda_2)]}{4} + \frac{3 \cos[3 (\lambda_1 - \lambda_2)] \cos[3 (\lambda_1 - \lambda_2)]}{4} + \frac{3 \cos[3 (\lambda_1 - \lambda_2)] \cos[3 (\lambda_1 - \lambda_2)]}{4} + \frac{3 \cos[3 (\lambda_1 - \lambda_2)] \cos[3 (\lambda_1 - \lambda_2)]}{4} + \frac{3 \cos[3 (\lambda_1 - \lambda_2)] \cos[3 (\lambda_1 - \lambda_2)]}{4} + \frac{3 \cos[3 (\lambda_1 - \lambda_2)] \cos[3 (\lambda_1 - \lambda_2)]}{4} + \frac{3 \cos[3 (\lambda_1 - \lambda_2)] \cos[3 (\lambda_1 - \lambda_2)]}{4} + \frac{3 \cos[3 (\lambda_1 - \lambda_2)] \cos[3 (\lambda_1 - \lambda_2)]}{4} + \frac{3 \cos[3 (\lambda_1 - \lambda_2)] \cos[3 (\lambda_1 - \lambda_2)]}{4} + \frac{3 \cos[3 (\lambda_1 - \lambda_2)] \cos[3 (\lambda_1 - \lambda_2)]}{4} + \frac{3 \cos[3 (\lambda_1 - \lambda_2)] \cos[3 (\lambda_1 - \lambda_2)]}{4} + \frac{3 \cos[3 (\lambda_1 - \lambda_2)] \cos[3 (\lambda_1 - \lambda_2)]}{4} + \frac{3 \cos[3 (\lambda_1 - \lambda_2)] \cos[3 (\lambda_1 - \lambda_2)]}{4} + \frac{3 \cos[3 (\lambda_1 - \lambda_2)]}{4} + 3 \cos[3 (\lambda_1$
$4\sqrt{\Lambda_1}\sqrt{\Lambda_2}$	$4\sqrt{\Lambda_1}\sqrt{\Lambda_2}$
$\frac{9\cos[\lambda_1 - 3\lambda_2] \cos[\eta_1 \eta_2]}{4} + \frac{3\cos[3\lambda_1 - 3]}{4}$	$\frac{\lambda_2 \left[\begin{array}{c} \operatorname{CO}_0 \eta_1 \eta_2 \\ \end{array} \right] + \frac{21 \operatorname{COs} \left[\lambda_1 - \lambda_2 \right] \operatorname{CO}_0 \eta_1 \eta_2}{4 + 2 \left[\begin{array}{c} \operatorname{CO}_0 \eta_1 \eta_2 \\ \end{array} \right] + 2 \left[\begin{array}{c} \operatorname{CO}_0 \eta_1 \eta_2 \\ \end{array} \right] + 2 \left[\begin{array}{c} \operatorname{CO}_0 \eta_1 \eta_2 \\ \end{array} \right] + 2 \left[\begin{array}{c} \operatorname{CO}_0 \eta_1 \eta_2 \\ \end{array} \right] + 2 \left[\begin{array}{c} \operatorname{CO}_0 \eta_1 \eta_2 \\ \end{array} \right] + 2 \left[\begin{array}{c} \operatorname{CO}_0 \eta_1 \eta_2 \\ \end{array} \right] + 2 \left[\begin{array}{c} \operatorname{CO}_0 \eta_1 \eta_2 \\ \end{array} \right] + 2 \left[\begin{array}{c} \operatorname{CO}_0 \eta_1 \eta_2 \\ \end{array} \right] + 2 \left[\begin{array}{c} \operatorname{CO}_0 \eta_1 \eta_2 \\ \end{array} \right] + 2 \left[\begin{array}{c} \operatorname{CO}_0 \eta_1 \eta_2 \\ \end{array} \right] + 2 \left[\begin{array}{c} \operatorname{CO}_0 \eta_1 \eta_2 \\ \end{array} \right] + 2 \left[\begin{array}{c} \operatorname{CO}_0 \eta_1 \eta_2 \\ \end{array} \right] + 2 \left[\begin{array}{c} \operatorname{CO}_0 \eta_1 \eta_2 \\ \end{array} \right] + 2 \left[\begin{array}{c} \operatorname{CO}_0 \eta_1 \eta_2 \\ \end{array} \right] + 2 \left[\begin{array}{c} \operatorname{CO}_0 \eta_1 \eta_2 \\ \end{array} \right] + 2 \left[\begin{array}{c} \operatorname{CO}_0 \eta_1 \eta_2 \\ \end{array} \right] + 2 \left[\begin{array}{c} \operatorname{CO}_0 \eta_1 \eta_2 \\ \end{array} \right] + 2 \left[\begin{array}{c} \operatorname{CO}_0 \eta_1 \eta_2 \\ \end{array} \right] + 2 \left[\begin{array}{c} \operatorname{CO}_0 \eta_1 \eta_2 \\ \end{array} \right] + 2 \left[\begin{array}{c} \operatorname{CO}_0 \eta_1 \eta_2 \\ \end{array} \right] + 2 \left[\begin{array}{c} \operatorname{CO}_0 \eta_1 \eta_2 \\ \end{array} \right] + 2 \left[\begin{array}{c} \operatorname{CO}_0 \eta_1 \eta_2 \\ \end{array} \right] + 2 \left[\begin{array}{c} \operatorname{CO}_0 \eta_1 \eta_2 \\ \end{array} \right] + 2 \left[\begin{array}{c} \operatorname{CO}_0 \eta_1 \eta_2 \\ \end{array} \right] + 2 \left[\begin{array}{c} \operatorname{CO}_0 \eta_1 \eta_2 \\ \end{array} \right] + 2 \left[\begin{array}{c} \operatorname{CO}_0 \eta_1 \eta_2 \\ \end{array} \right] + 2 \left[\begin{array}{c} \operatorname{CO}_0 \eta_1 \eta_2 \\ \end{array} \right] + 2 \left[\begin{array}{c} \operatorname{CO}_0 \eta_1 \eta_2 \\ \end{array} \right] + 2 \left[\begin{array}{c} \operatorname{CO}_0 \eta_1 \eta_2 \\ \end{array} \right] + 2 \left[\begin{array}{c} \operatorname{CO}_0 \eta_1 \eta_2 \\ \end{array} \right] + 2 \left[\begin{array}{c} \operatorname{CO}_0 \eta_1 \eta_2 \\ \end{array} \right] + 2 \left[\begin{array}[\begin{array}{c} \operatorname{CO}_0 \eta_1 \eta_2 \\ \end{array} \right] + 2 \left[\begin{array}[\begin{array}{c} \operatorname{CO}_0 \eta_1 \eta_2 \\ \end{array} \right] + 2 \left[\begin{array}[\begin{array}{c} \operatorname{CO}_0 \eta_1 \eta_2 \\ \end{array} \right] + 2 \left[\begin{array}[\begin{array}{c} \operatorname{CO}_0 \eta_1 \eta_2 \\ \end{array} \right] + 2 \left[\begin{array}[\begin{array}{c} \operatorname{CO}_0 \eta_1 \eta_2 \\ \end{array} \right] + 2 \left[\left[\left[\operatorname{CO}_0 \eta_1 \eta_2 \right] \right] + 2 \left[\left[\left[\operatorname{CO}_0 \eta_1 \eta_2 \right] \right] + 2 \left[\left[\left[\operatorname{CO}_0 \eta_1 \eta_2 \right] \right] + 2 \left[\left[\left[\operatorname{CO}_0 \eta_1 \eta_2 \right] \right] + 2 \left[\left[\left[\operatorname{CO}_0 \eta_1 \eta_2 \right] \right] + 2 \left[\left[\left[\operatorname{CO}_0 \eta_1 \eta_2 \right] \right] + 2 \left[\left[\left[\operatorname{CO}_0 \eta_1 \eta_2 \right] \right] + 2 \left[\left[\left[\operatorname{CO}_0 \eta_1 \eta_2 \right] \right] + 2 \left[\left[\left[\operatorname{CO}_0 \eta_1 \eta_2 \right] \right] + 2 \left[\left[\left[\operatorname{CO}_0 \eta_1 \eta_2 \right] \right] + 2 \left[\left[\left[\operatorname{CO}_0 \eta_1 \eta_2 \right] \right] + 2 \left[\left[\left[\operatorname{CO}_0 \eta_1 \eta_2 \right] \right] + 2 \left[\left[\left[\operatorname{CO}_0 \eta_1 \eta_2 \right] \right] + 2 \left[\left[\left[\operatorname{CO}_0 \eta_1 \eta_2 \right] \right] + 2 \left[\left[\left[\operatorname{CO}_0 \eta_1 \eta_2 \right] \right] + 2 \left[\left[\left[\operatorname{CO}_0 \eta_1 \eta_2 \right] \right] + 2 \left[\left[\left[\operatorname{CO}_0 \eta_1 \eta_2 \right] \right] + 2 \left[\left[\left[\operatorname{CO}_0 \eta_1 \eta_2 \right] \right] + 2 \left[\left[\left[\operatorname{CO}_0 \eta_1 \eta_2 \right] \right] + 2 \left[\left[\left[\operatorname{CO}$
$16\sqrt{\Lambda_1}\sqrt{\Lambda_2}$ $16\sqrt{\Lambda_1}$	$\sqrt{\Lambda_2}$ 16 $\sqrt{\Lambda_1}$ $\sqrt{\Lambda_2}$
$\frac{9\cos[3\lambda_1 - \lambda_2] \cos[\eta_1 \eta_2}{2} - \frac{21\cos[\lambda_1 + \lambda_2]}{2}$	$\frac{] C 0_0 \eta_1 \eta_2}{$
$16\sqrt{\Lambda_1}\sqrt{\Lambda_2} \qquad 8\sqrt{\Lambda_1}$	$\sqrt{\Lambda_2}$ 16 $\sqrt{\Lambda_1}$ $\sqrt{\Lambda_2}$
$\frac{33\cos[2\lambda_1]\cos[1+\eta_1]}{2} + \frac{9\cos[2\lambda_1-4\lambda_2]}{2}$	$\frac{CO_1 \eta_1 \eta_2}{CO_1 \eta_1 \eta_2} + \frac{3 COS[4 \lambda_1 - 4 \lambda_2] CO_1 \eta_1 \eta_2}{CO_1 \eta_1 \eta_2} +$
$16\sqrt{\Lambda_1}\sqrt{\Lambda_2} \qquad 16\sqrt{\Lambda_1}\sqrt{\Lambda_2}$	$\Lambda_2 \qquad \qquad 16\sqrt{\Lambda_1}\sqrt{\Lambda_2}$
$\frac{3\cos[2\lambda_1 - 2\lambda_2]\cos[\eta_1\eta_2]}{2} + \frac{9\cos[4\lambda_1 - 2\lambda_2]\cos[\eta_1\eta_2]}{2}$	$\frac{2 \lambda_2 \left[C U_1 \eta_1 \eta_2 \right]}{2 \lambda_2 \left[C U_1 \eta_1 \eta_2 \right]} + \frac{33 \left[C U_1 \eta_1 \eta_2 \right]}{2 \lambda_2 \left[C U_1 \eta_1 \eta_2 \right]} + \frac{33 \left[C U_1 \eta_1 \eta_2 \right]}{2 \lambda_2 \left[C U_1 \eta_1 \eta_2 \right]} + \frac{33 \left[C U_1 \eta_1 \eta_2 \right]}{2 \lambda_2 \left[C U_1 \eta_1 \eta_2 \right]} + \frac{33 \left[C U_1 \eta_1 \eta_2 \right]}{2 \lambda_2 \left[C U_1 \eta_1 \eta_2 \right]} + \frac{33 \left[C U_1 \eta_1 \eta_2 \right]}{2 \lambda_2 \left[C U_1 \eta_1 \eta_2 \right]} + \frac{33 \left[C U_1 \eta_1 \eta_2 \right]}{2 \lambda_2 \left[C U_1 \eta_1 \eta_2 \right]} + \frac{33 \left[C U_1 \eta_1 \eta_2 \right]}{2 \lambda_2 \left[C U_1 \eta_1 \eta_2 \right]} + \frac{33 \left[C U_1 \eta_1 \eta_2 \right]}{2 \lambda_2 \left[C U_1 \eta_1 \eta_2 \right]} + \frac{33 \left[C U_1 \eta_1 \eta_2 \right]}{2 \lambda_2 \left[C U_1 \eta_1 \eta_2 \right]} + \frac{33 \left[C U_1 \eta_1 \eta_2 \right]}{2 \lambda_2 \left[C U_1 \eta_1 \eta_2 \right]} + \frac{33 \left[C U_1 \eta_1 \eta_2 \right]}{2 \lambda_2 \left[C U_1 \eta_1 \eta_2 \right]} + \frac{33 \left[C U_1 \eta_1 \eta_2 \right]}{2 \lambda_2 \left[C U_1 \eta_1 \eta_2 \right]} + \frac{33 \left[C U_1 \eta_1 \eta_2 \right]}{2 \lambda_2 \left[C U_1 \eta_1 \eta_2 \right]} + \frac{33 \left[C U_1 \eta_1 \eta_2 \right]}{2 \lambda_2 \left[C U_1 \eta_1 \eta_2 \right]} + \frac{33 \left[C U_1 \eta_1 \eta_2 \right]}{2 \lambda_2 \left[C U_1 \eta_1 \eta_2 \right]} + \frac{33 \left[C U_1 \eta_1 \eta_2 \right]}{2 \lambda_2 \left[C U_1 \eta_1 \eta_2 \right]} + \frac{33 \left[C U_1 \eta_1 \eta_2 \right]}{2 \lambda_2 \left[C U_1 \eta_1 \eta_2 \right]} + \frac{33 \left[C U_1 \eta_1 \eta_2 \right]}{2 \lambda_2 \left[C U_1 \eta_1 \eta_2 \right]} + \frac{33 \left[C U_1 \eta_1 \eta_2 \right]}{2 \lambda_2 \left[C U_1 \eta_1 \eta_2 \right]} + \frac{33 \left[C U_1 \eta_1 \eta_2 \right]}{2 \lambda_2 \left[C U_1 \eta_1 \eta_2 \right]} + \frac{33 \left[C U_1 \eta_1 \eta_2 \right]}{2 \lambda_2 \left[C U_1 \eta_1 \eta_2 \right]} + \frac{33 \left[C U_1 \eta_1 \eta_2 \right]}{2 \lambda_2 \left[C U_1 \eta_1 \eta_2 \right]} + \frac{33 \left[C U_1 \eta_1 \eta_2 \right]}{2 \lambda_2 \left[C U_1 \eta_1 \eta_2 \right]} + \frac{33 \left[C U_1 \eta_1 \eta_2 \right]}{2 \lambda_2 \left[C U_1 \eta_1 \eta_2 \right]} + \frac{33 \left[C U_1 \eta_1 \eta_2 \right]}{2 \lambda_2 \left[C U_1 \eta_1 \eta_2 \right]} + \frac{33 \left[C U_1 \eta_1 \eta_2 \right]}{2 \lambda_2 \left[C U_1 \eta_1 \eta_2 \right]} + \frac{33 \left[C U_1 \eta_1 \eta_2 \right]}{2 \lambda_2 \left[C U_1 \eta_1 \eta_2 \right]} + \frac{33 \left[C U_1 \eta_1 \eta_2 \right]}{2 \lambda_2 \left[C U_1 \eta_1 \eta_2 \right]} + \frac{33 \left[C U_1 \eta_1 \eta_2 \right]}{2 \lambda_2 \left[C U_1 \eta_1 \eta_2 \right]} + \frac{33 \left[C U_1 \eta_1 \eta_2 \right]}{2 \lambda_2 \left[C U_1 \eta_1 \eta_2 \right]} + \frac{33 \left[C U_1 \eta_1 \eta_2 \right]}{2 \lambda_2 \left[C U_1 \eta_1 \eta_2 \right]} + \frac{33 \left[C U_1 \eta_1 \eta_2 \right]}{2 \lambda_2 \left[C U_1 \eta_1 \eta_2 \right]} + \frac{33 \left[C U_1 \eta_1 \eta_2 \right]}{2 \lambda_2 \left[C U_1 \eta_1 \eta_2 \right]} + \frac{33 \left[C U_1 \eta_1 \eta_2 \right]}{2 \lambda_2 \left[C U_1 \eta_1 \eta_2 \right]} + \frac{33 \left[C U_1 \eta_1 \eta_2 \right]}{2 \lambda_2 \left[C U_1 \eta_1 \eta_2 \right]} + \frac{33 \left[C U_1 \eta_1 \eta_2 \right]}{2 \lambda_2 \left[C U_1 \eta_1 \eta_2 \right]} + 33 \left$
$2\sqrt{\Lambda_1}\sqrt{\Lambda_2}$ $16\sqrt{\Lambda_2}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\frac{9\cos[3\lambda_1 - 3\lambda_2]\cos[3\lambda_1 - 3\lambda_2]\cos[3\lambda_1 - 3\lambda_2]}{\cos[3\lambda_1 - 3\lambda_2]\cos[3\lambda_1 - 3\lambda_2]} + \frac{3\cos[3\lambda_1 - 3\lambda_2]\cos[3\lambda_1 - 3\lambda_2]\cos[3\lambda_1 - 3\lambda_2]}{\cos[3\lambda_1 - 3\lambda_2]\cos[3\lambda_1 - 3\lambda_2]\cos[3\lambda_1 - 3\lambda_2]}$	$\frac{5 \chi_2 \int C U_2 \eta_1 \eta_2}{2 \int C U_2 \eta_1 \eta_2} - \frac{21 C O S [\chi_1 - 5 \chi_2] C U_2 \eta_1 \eta_2}{2 \int C U_2 \eta_1 \eta_2} +$
$16\sqrt{\Lambda_1}\sqrt{\Lambda_2} \qquad 16\sqrt{\Lambda}$	$ \begin{array}{cccc} \Lambda_1 & \sqrt{\Lambda_2} & 8 \sqrt{\Lambda_1} & \sqrt{\Lambda_2} \\ \hline & & & & 3 \end{array} $
$\frac{21003[3X_1 - 3X_2]002[\eta_1]\eta_2}{16\sqrt{2}} + \frac{3003[3X_1]}{16}$	$\frac{1}{2} = \frac{1}{2} = \frac{1}$
$\frac{10 \sqrt{\Lambda_1} \sqrt{\Lambda_2}}{21 \cos[3\lambda_1 - \lambda_2] \cos n_1 n_2} = 9 \cos[\lambda_1 + \lambda_2]$	$\Lambda_1 \sqrt{\Lambda_2}$ $2\sqrt{\Lambda_1} \sqrt{\Lambda_2}$ $1 C0_2 n_1 n_2$ $3 C0_2 n_1 n_2$ $9 C05 [2 \lambda_1] C0_2 n_1 n_2$
$\frac{1}{8\sqrt{\sqrt{2}}} + \frac{1}{8\sqrt{\sqrt{2}}}$	$\frac{1}{16}$
$9 \cos[4 \lambda_1 - 6 \lambda_2] CO_3 \eta_1 \eta_2$ $3 \cos[6 \lambda_1 - 6 \lambda_2] CO_3 \eta_1 \eta_2$	$6 \lambda_2$ $C 0_3 \eta_1 \eta_2$ $21 \cos [2 \lambda_1 - 4 \lambda_2] C 0_3 \eta_1 \eta_2$
$16\sqrt{\Lambda_1}\sqrt{\Lambda_2}$ + $16\sqrt{2}$	$\overline{\Lambda_1} \sqrt{\Lambda_2} = - \frac{8 \sqrt{\Lambda_1} \sqrt{\Lambda_2}}{4} + \frac{8 \sqrt{\Lambda_1} \sqrt{\Lambda_2}}{4}$
21 Cos [4 λ_1 – 4 λ_2] CO ₃ $\eta_1 \eta_2$ 9 Cos [6 λ_1	$-4 \lambda_2] CO_3 \eta_1 \eta_2 \qquad 21 Cos [2 \lambda_1 - 2 \lambda_2] CO_3 \eta_1 \eta_2$
$16\sqrt{\Lambda_1}\sqrt{\Lambda_2}$ + 16 v	$\overline{\Lambda_1} \sqrt{\Lambda_2}$ + $16 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$ -
$\frac{21\cos\left[4\lambda_1-2\lambda_2\right]\cos_3\eta_1\eta_2}{4} \pm \frac{9\cos\left[2\lambda_2\right]}{4}$	$CO_3 \eta_1 \eta_2 = 9 a_1 CO_0 \gamma_1 \eta_1 \eta_2$
$8\sqrt{\Lambda_1}\sqrt{\Lambda_2}$ 16 $\sqrt{\Lambda_1}$	$\sqrt{\Lambda_2}$ 8 a ₂ $\gamma_2 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$
$\frac{9\cos[2\lambda_{1}] a_{1}\cos_{0}\gamma_{1}\eta_{1}\eta_{2}}{3\cos[2\lambda_{1}-2]} + \frac{3\cos[2\lambda_{1}-2]}{3\cos[2\lambda_{1}-2]}$	$\frac{2\lambda_2}{a_1} \operatorname{CO}_0 \gamma_1 \eta_1 \eta_2}{a_1} - \frac{3\operatorname{Cos}[2\lambda_2] a_1 \operatorname{CO}_0 \gamma_1 \eta_1 \eta_2}{a_1 \operatorname{CO}_0 \gamma_1 \eta_1 \eta_2}.$
$8 a_2 \gamma_2 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$ $8 a_2 \gamma_2$	$a_2 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$ 8 $a_2 \gamma_2 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$
$\frac{3\cos[\lambda_1 - 3\lambda_2]a_1\cos[\gamma_1\eta_1\eta_2]}{4\cos[3\lambda_1+3\lambda_2]a_1\cos[\gamma_1\eta_1\eta_2]} + \frac{3\cos[3\lambda_1+3\lambda_2]a_1\cos[\gamma_1\eta_1\eta_2]}{4\cos[3\lambda_1+3\lambda_2]a_1\cos[\gamma_1\eta_1\eta_2]}$	$\lambda_1 - 3 \lambda_2] a_1 CO_1 \gamma_1 \eta_1 \eta_2$
$8 a_2 \gamma_2 \sqrt{\Lambda_1} \sqrt{\Lambda_2} \qquad 8$	$a_2 \gamma_2 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$
$\frac{15 \cos \left[\lambda_1 - \lambda_2\right] a_1 \operatorname{CO}_1 \gamma_1 \eta_1 \eta_2}{2} + \frac{9 \cos \left[3 \lambda_1 + \lambda_2\right]}{2}$	$ \underbrace{ \begin{bmatrix} -\lambda_2 \end{bmatrix} a_1 C 0_1 \gamma_1 \eta_1 \eta_2}_{+} + $
$8 a_2 \gamma_2 \sqrt{\Lambda_1} \sqrt{\Lambda_2} \qquad 8 a_2 \gamma_2 \sqrt{\Lambda_1} \sqrt{\Lambda_2} \sqrt{\Lambda_2} \sqrt{\Lambda_2} \sqrt{\Lambda_1} \sqrt{\Lambda_2} \qquad 8 a_2 \gamma_2 \sqrt{\Lambda_1} \sqrt{\Lambda_2} \sqrt{\Lambda_2} \sqrt{\Lambda_2} \sqrt{\Lambda_1} \sqrt{\Lambda_2} $	$\lambda_2 \gamma_2 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$
$\frac{3\cos[\lambda_1+\lambda_2]a_1\cos[\gamma_1\eta_1\eta_2]}{\cos[\lambda_1+\lambda_2]a_1\cos[\gamma_1\eta_1\eta_2]} + \frac{3a_1\cos[\gamma_1\eta_2]a_2}{\cos[\lambda_1+\lambda_2]a_1\cos[\gamma_1\eta_1\eta_2]} + \frac{3a_1\cos[\gamma_1\eta_1\eta_2]a_2}{\cos[\lambda_1+\lambda_2]a_1\cos[\gamma_1\eta_1\eta_2]a_2}$	$\frac{1}{2}\frac{\eta_1}{\eta_2} - \frac{3\cos[2\lambda_1]}{2}\frac{1}{\alpha_1}\frac{1}{\omega_2}\frac{1}{\gamma_1}\frac{\eta_1}{\eta_2} - \frac{1}{\alpha_1}\frac{1}{\omega_2}\frac{1}{\gamma_1}\frac{1}{\gamma_1}\frac{1}{\gamma_2} - \frac{1}{\alpha_1}\frac{1}{\omega_2}\frac{1}{\gamma_1}\frac{1}{\gamma_1}\frac{1}{\gamma_2}\frac{1}{\gamma_1}\frac{1}{\gamma_2}\frac{1}{\gamma_1}\frac{1}{\gamma_1}\frac{1}{\gamma_2}\frac{1}{\gamma_1}\frac{1}{\gamma_1}\frac{1}{\gamma_2}\frac{1}{\gamma_1}\frac{1}{\gamma_1}\frac{1}{\gamma_2}\frac{1}{\gamma_1}\frac{1}{\gamma_1}\frac{1}{\gamma_2}\frac{1}{\gamma_1}\frac{1}{\gamma_1}\frac{1}{\gamma_1}\frac{1}{\gamma_1}\frac{1}{\gamma_2}\frac{1}{\gamma_1}1$
$4 a_2 \gamma_2 \sqrt{\Lambda_1} \sqrt{\Lambda_2} \qquad 8 a_2 \gamma_2 \sqrt{\Lambda_2}$	$\sqrt{\Lambda_2}$ 8 a ₂ $\gamma_2 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$
$\frac{30005[2]\chi_1 - 4\chi_2] a_1 c_0 c_2 g_1 g_1 g_2}{2} + \frac{30005[2]\chi_1 - 4\chi_2] a_1 c_0 c_2 g_1 g_1 g_1 g_2}{2} + \frac{30005[2]\chi_1 - 4\chi_2] a_1 c_0 c_2 g_1 g_1 g_1 g_2}{2} + \frac{30005[2]\chi_1 - 4\chi_2] a_1 c_0 c_2 g_1 g_1 g_1 g_2}{2} + \frac{30005[2]\chi_1 - 4\chi_2] a_1 c_0 c_2 g_1 g_1 g_1 g_2}{2} + \frac{30005[2]\chi_1 - 4\chi_2] a_1 c_0 c_2 g_1 g_1 g_1 g_2}{2} + \frac{30005[2]\chi_1 - 4\chi_2] a_1 c_0 c_2 g_1 g_1 g_1 g_2}{2} + \frac{30005[2]\chi_1 - 4\chi_2] a_1 c_0 c_2 g_1 g_1 g_1 g_2}{2} + \frac{30005[2]\chi_1 - 4\chi_2] a_1 c_0 c_2 g_1 g_1 g_1 g_2}{2} + \frac{30005[2]\chi_1 - 4\chi_2}{2} + 300$	
$9 \cos[2\lambda_1 - 2\lambda_2] = 2 \cos[4\lambda_1 - 2\lambda_2]$	$\circ d_2 \gamma_2 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$
$\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}$	8 20 20 0 1 2 0 2 0 1 7 1 7 2 +
$\frac{4}{9} \cos \left[2 \lambda_2 \right] a_1 \cos \left[2 \lambda_1 \right] n_1 + \frac{3}{10} \cos \left[3 \lambda_1 \right] - \frac{1}{10}$	$5 \alpha_2 \beta_2 \gamma_{11} \gamma_{12}$ $5 \lambda_2 a_1 C 0_3 \gamma_1 \eta_1 \eta_2$
$\frac{1}{8 a_2 \gamma_2 \sqrt{\Lambda_1} \sqrt{\Lambda_2}} = \frac{1}{8 a_2 \gamma_2}$	$\frac{1}{2}\sqrt{\Lambda_1}\sqrt{\Lambda_2}$ +
	- , - , -

 $\frac{3\cos[5\lambda_1 - 5\lambda_2] a_1\cos_3\gamma_1\eta_1\eta_2}{9\cos[\lambda_1 - 3\lambda_2] a_1\cos_3\gamma_1\eta_1\eta_2} + \frac{9\cos[\lambda_1 - 3\lambda_2] a_1\cos_3\gamma_1\eta_1\eta_2}{1-3\cos^2(\lambda_1 - 3\lambda_2)} = -\frac{1}{3\cos^2(\lambda_1 - 3\lambda_2)} + \frac{1}{3\cos^2(\lambda_1 - 3\lambda$ $8 a_2 \gamma_2 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$ $8 a_2 \gamma_2 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$ $4 a_2 \gamma_2 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$ $8 a_2 \gamma_2 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$ $\frac{3\cos[\lambda_1-\lambda_2]a_1\cos_3\gamma_1\eta_1\eta_2}{3\cos[3\lambda_1-\lambda_2]a_1\cos_3\gamma_1\eta_1\eta_2} = \frac{3\cos[3\lambda_1-\lambda_2]a_1\cos_3\gamma_1\eta_1\eta_2}{3\cos[3\lambda_1-\lambda_2]a_1\cos_3\gamma_1\eta_1\eta_2}$ $8 a_2 \gamma_2 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$ $8 a_2 \gamma_2 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$ $\frac{9 a_2 C 0_0 \gamma_2 \eta_1 \eta_2}{2 \alpha_1 \alpha_2} = \frac{3 \cos [2 \lambda_1] a_2 C 0_0 \gamma_2 \eta_1 \eta_2}{2 \alpha_2 C 0_0 \gamma_2 \eta_1 \eta_2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] a_2 C 0_0 \gamma_2 \eta_1 \eta_2}{2 \alpha_2 C 0_0 \gamma_2 \eta_1 \eta_2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] a_2 C 0_0 \gamma_2 \eta_1 \eta_2}{2 \alpha_2 C 0_0 \gamma_2 \eta_1 \eta_2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] a_2 C 0_0 \gamma_2 \eta_1 \eta_2}{2 \alpha_2 C 0_0 \gamma_2 \eta_1 \eta_2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] a_2 C 0_0 \gamma_2 \eta_1 \eta_2}{2 \alpha_2 C 0_0 \gamma_2 \eta_1 \eta_2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] a_2 C 0_0 \gamma_2 \eta_1 \eta_2}{2 \alpha_2 C 0_0 \gamma_2 \eta_1 \eta_2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] a_2 C 0_0 \gamma_2 \eta_1 \eta_2}{2 \alpha_2 C 0_0 \gamma_2 \eta_1 \eta_2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] a_2 C 0_0 \gamma_2 \eta_1 \eta_2}{2 \alpha_2 C 0_0 \gamma_2 \eta_1 \eta_2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] a_2 C 0_0 \gamma_2 \eta_1 \eta_2}{2 \alpha_2 C 0_0 \gamma_2 \eta_1 \eta_2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] a_2 C 0_0 \gamma_2 \eta_1 \eta_2}{2 \alpha_2 C 0_0 \gamma_2 \eta_1 \eta_2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] a_2 C 0_0 \gamma_2 \eta_1 \eta_2}{2 \alpha_2 C 0_0 \gamma_2 \eta_1 \eta_2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] a_2 C 0_0 \gamma_2 \eta_1 \eta_2}{2 \alpha_2 C 0_0 \gamma_2 \eta_1 \eta_2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] a_2 C 0_0 \gamma_2 \eta_1 \eta_2}{2 \alpha_2 C 0_0 \gamma_2 \eta_1 \eta_2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] a_2 C 0_0 \gamma_2 \eta_1 \eta_2}{2 \alpha_2 C 0_0 \gamma_2 \eta_1 \eta_2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] a_2 C 0_0 \gamma_2 \eta_1 \eta_2}{2 \alpha_2 C 0_0 \gamma_2 \eta_1 \eta_2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] a_2 C 0_0 \gamma_2 \eta_1 \eta_2}{2 \alpha_2 C 0_0 \gamma_2 \eta_1 \eta_2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] a_2 C 0_0 \gamma_2 \eta_1 \eta_2}{2 \alpha_2 C 0_0 \gamma_2 \eta_1 \eta_2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] a_2 C 0_0 \gamma_2 \eta_1 \eta_2}{2 \alpha_2 C 0_0 \gamma_2 \eta_1 \eta_2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] a_2 C 0_0 \gamma_2 \eta_1 \eta_2}{2 \alpha_2 C 0_0 \gamma_2 \eta_1 \eta_2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] a_2 C 0_0 \gamma_2 \eta_1 \eta_2}{2 \alpha_2 C 0_0 \gamma_2 \eta_1 \eta_2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] a_2 C 0_0 \gamma_2 \eta_1 \eta_2}{2 \alpha_2 C 0_0 \gamma_2 \eta_1 \eta_2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] a_2 C 0_0 \gamma_2 \eta_1 \eta_2}{2 \alpha_2 C 0_0 \gamma_2 \eta_1 \eta_2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] a_2 C 0_0 \gamma_2 \eta_1 \eta_2}{2 \alpha_2 C 0_0 \gamma_2 \eta_1 \eta_2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] a_2 C 0_0 \gamma_2 \eta_1 \eta_2}{2 \alpha_2 C 0_0 \gamma_2 \eta_1 \eta_2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] a_2 C 0_0 \gamma_2 \eta_1 \eta_2}{2 \alpha_2 C 0_0 \gamma_2 \eta_1 \eta_2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] \alpha_2 C 0_0 \gamma_2 \eta_1 \eta_2}{2 \alpha_2 C 0_0 \gamma_2 \eta_1 \eta_2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] \alpha_2 C 0_0 \gamma_2 \eta_1 \eta_2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] \alpha_2 C \sigma_2 \gamma_2 \eta_2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] \alpha_2 C \sigma_2 \gamma_2 \eta_2} + \frac{3 \cos [$ $8 a_1 \gamma_1 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$ $8 a_1 \gamma_1 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$ $8 a_1 \gamma_1 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$ $\frac{9 \cos [2 \lambda_2] a_2 \cos [\gamma_2 \eta_1 \eta_2]}{9 \cos [\lambda_1 - 3 \lambda_2] a_2 \cos [\gamma_2 \eta_1 \eta_2]} + \frac{9 \cos [\lambda_1 - 3 \lambda_2] a_2 \cos [\gamma_2 \eta_1 \eta_2]}{1 \cos [\gamma_2 \eta_1 \eta_2]}$ $8 a_1 \gamma_1 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$ $8 a_1 \gamma_1 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$ $\frac{3\cos[3\lambda_1-3\lambda_2]a_2\cos_1\gamma_2\eta_1\eta_2}{15\cos[\lambda_1-\lambda_2]a_2\cos_1\gamma_2\eta_1\eta_2} = \frac{15\cos[\lambda_1-\lambda_2]a_2\cos_1\gamma_2\eta_1\eta_2}{15\cos[\lambda_1-\lambda_2]a_2\cos_1\gamma_2\eta_1\eta_2} = \frac{15\cos[\lambda_1-\lambda_2]a_2\cos_1\gamma_2\eta_1\eta_2}{15\cos[\lambda_1-\lambda_2]a_2\cos_1\gamma_2\eta_2} = \frac{15\cos[\lambda_1-\lambda_2]a_2\cos_1\gamma_2} = \frac{15\cos[\lambda_1-\lambda_2$ $8 a_1 \gamma_1 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$ $8 a_1 \gamma_1 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$ $\frac{3\cos[3\lambda_1-\lambda_2]a_2\cos_1\gamma_2\eta_1\eta_2}{3\cos[\lambda_1+\lambda_2]a_2\cos_1\gamma_2\eta_1\eta_2} + \frac{3\cos[\lambda_1+\lambda_2]a_2\cos_1\gamma_2\eta_1\eta_2}{3\cos[\lambda_1+\lambda_2]a_2\cos_1\gamma_2\eta_1\eta_2} + \frac{3\cos[\lambda_1+\lambda_2]a_2\cos_1\gamma_2\eta_1\eta_2}{3\cos[\lambda_1+\lambda_2]a_2\cos_1\gamma_2\eta_2} + \frac{3\cos[\lambda_1+\lambda_2]a_2\cos_1\gamma_2\eta_2}{3\cos[\lambda_1+\lambda_2]a_2\cos_1\gamma_2} + \frac{3\cos[\lambda_1+\lambda_2]a_2\cos_1\gamma_2}{3\cos[\lambda_1+\lambda_2]a_2\cos_1\gamma_2} + \frac{3\cos[\lambda_1+\lambda_2]a_2\cos_1\gamma_2} + \frac$ $8 a_1 \gamma_1 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$ $4 a_1 \gamma_1 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$ $8 a_1 \gamma_1 \sqrt{\Lambda_1} \sqrt{\Lambda_2} \qquad 8 a_1 \gamma_1 \sqrt{\Lambda_1} \sqrt{\Lambda_2} \qquad 8 a_1 \gamma_1 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$ $\frac{3\cos[4\lambda_1 - 4\lambda_2] a_2 \cos_2 \gamma_2 \eta_1 \eta_2}{9\cos[2\lambda_1 - 2\lambda_2] a_2 \cos_2 \gamma_2 \eta_1 \eta_2} = \frac{9\cos[2\lambda_1 - 2\lambda_2] a_2 \cos_2 \gamma_2 \eta_1 \eta_2}{1-2\cos(2\lambda_1 - 2\lambda_2)} = \frac{1}{2} \cos(2\lambda_1 - 2\lambda_2) \cos(2\lambda_1 - 2\lambda_2) \cos(2\lambda_1 - 2\lambda_2) \cos(2\lambda_1 - 2\lambda_2)}{1-2\cos(2\lambda_1 - 2\lambda_2) \cos(2\lambda_1 - 2\lambda_2)} = \frac{1}{2} \cos(2\lambda_1 - 2\lambda_2) \cos(2\lambda_1 - 2\lambda_2) \cos(2\lambda_1 - 2\lambda_2)}{1-2\cos(2\lambda_1 - 2\lambda_2) \cos(2\lambda_1 - 2\lambda_2)} = \frac{1}{2} \cos(2\lambda_1 - 2\lambda_2) \cos(2\lambda_1 - 2\lambda_2) \cos(2\lambda_1 - 2\lambda_2)}{1-2\cos(2\lambda_1 - 2\lambda_2) \cos(2\lambda_1 - 2\lambda_2)} = \frac{1}{2} \cos(2\lambda_1 - 2\lambda_2) \cos(2\lambda_1 - 2\lambda_2) \cos(2\lambda_1 - 2\lambda_2)}{1-2\cos(2\lambda_1 - 2\lambda_2) \cos(2\lambda_1 - 2\lambda_2)} = \frac{1}{2} \cos(2\lambda_1 - 2\lambda_2) \cos(2\lambda_1 - 2\lambda_2) \cos(2\lambda_1 - 2\lambda_2)}{1-2\cos(2\lambda_1 - 2\lambda_2) \cos(2\lambda_1 - 2\lambda_2)} = \frac{1}{2} \cos(2\lambda_1 - 2\lambda_2) \cos(2\lambda_1 - 2\lambda_2) \cos(2\lambda_1 - 2\lambda_2)}{1-2\cos(2\lambda_1 - 2\lambda_2) \cos(2\lambda_1 - 2\lambda_2)} = \frac{1}{2} \cos(2\lambda_1 - 2\lambda_2) \cos(2\lambda_1 - 2\lambda_2) \cos(2\lambda_1 - 2\lambda_2)}{1-2\cos(2\lambda_1 - 2\lambda_2) \cos(2\lambda_1 - 2\lambda_2)} = \frac{1}{2} \cos(2\lambda_1 - 2\lambda_2) \cos(2\lambda_1 - 2\lambda_2) \cos(2\lambda_1 - 2\lambda_2)}{1-2\cos(2\lambda_1 - 2\lambda_2) \cos(2\lambda_1 - 2\lambda_2)} = \frac{1}{2} \cos(2\lambda_1 - 2\lambda_2) \cos(2\lambda_1 - 2\lambda_2)}{1-2\cos(2\lambda_1 - 2\lambda_2) \cos(2\lambda_1 - 2\lambda_2)} = \frac{1}{2} \cos(2\lambda_1 - 2\lambda_2) \cos(2\lambda_1 - 2\lambda_2)}{1-2\cos(2\lambda_1 - 2\lambda_2)} = \frac{1}{2} \cos(2\lambda_1 - 2\lambda_2) \cos(2\lambda_1 - 2\lambda_2)}{1-2\cos(2\lambda_1 - 2\lambda_2)} = \frac{1}{2} \cos(2\lambda_1 - 2\lambda_2) \cos(2\lambda_1 - 2\lambda_2)}{1-2\cos(2\lambda_1 - 2\lambda_2)} = \frac{1}{2} \cos(2\lambda_1 - 2\lambda_2) \cos(2\lambda_1 - 2\lambda_2)}{1-2\cos(2\lambda_1 - 2\lambda_2)} = \frac{1}{2} \cos(2\lambda_1 - 2\lambda_2) \cos(2\lambda_1 - 2\lambda_2)}{1-2\cos(2\lambda_1 - 2\lambda_2)} = \frac{1}{2} \cos(2\lambda_1 - 2\lambda_2) \cos(2\lambda_1 - 2\lambda_2)}{1-2\cos(2\lambda_1 - 2\lambda_2)} = \frac{1}{2} \cos(2\lambda_1 - 2\lambda_2) \cos(2\lambda_1 - 2\lambda_2)}{1-2\cos(2\lambda_1 - 2\lambda_2)} = \frac{1}{2} \cos(2\lambda_1 - 2\lambda_2) \cos(2\lambda_1 - 2\lambda_2)}{1-2\cos(2\lambda_1 - 2\lambda_2)} = \frac{1}{2} \cos(2\lambda_1 - 2\lambda_2) \cos(2\lambda_1 - 2\lambda_2)}{1-2\cos(2\lambda_1 - 2\lambda_2)} = \frac{1}{2} \cos(2\lambda_1 - 2\lambda_2) \cos(2\lambda_1 - 2\lambda_2)}{1-2\cos(2\lambda_1 - 2\lambda_2)} = \frac{1}{2} \cos(2\lambda_1 - 2\lambda_2) \cos(2\lambda_1 - 2\lambda_2)}{1-2\cos(2\lambda_1 - 2\lambda_2)} = \frac{1}{2} \cos(2\lambda_1 - 2\lambda_2) \cos(2\lambda_1 - 2\lambda_2)}{1-2\cos(2\lambda_1 - 2\lambda_2)} = \frac{1}{2} \cos(2\lambda_1 4 a_1 \gamma_1 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$ $8 a_1 \gamma_1 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$ $\frac{3\cos\left[4\lambda_{1}-2\lambda_{2}\right]a_{2}\cos\left[2\lambda_{2}\right]a_{2}\cos\left[2\lambda_{2}\right]a_{2}\cos\left[2\lambda_{2}\right]a_{2}\cos\left[2\lambda_{2}\right]a_{2}}{-\frac{3\cos\left[2\lambda_{2}\right]a_{2}\cos\left[2\lambda_{2}\right]a_{2}\cos\left[2\lambda_{2}\right]a_{2}}{+\frac{3\cos\left[2\lambda_{2}\right]a_{2}\cos\left[2\lambda_{2}\right]a_{2}\cos\left[2\lambda_{2}\right]a_{2}}}$ $8 a_1 \gamma_1 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$ $8 a_1 \gamma_1 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$ $\frac{9\cos[3\lambda_1 - 5\lambda_2] a_2 \cos_3 \gamma_2 \eta_1 \eta_2}{2} + \frac{3\cos[5\lambda_1 - 5\lambda_2] a_2 \cos_3 \gamma_2 \eta_1 \eta_2}{2} - \frac{3\cos[5\lambda_1 - 5\lambda_2] a_2 \cos_3 \gamma_2 \eta_1 \eta_2}{2} - \frac{3\cos[5\lambda_1 - 5\lambda_2] a_2 \cos_3 \gamma_2 \eta_1 \eta_2}{2} - \frac{3\cos[5\lambda_1 - 5\lambda_2] a_2 \cos_3 \gamma_2 \eta_1 \eta_2}{2} + \frac{3\cos[5\lambda_1 - 5\lambda_2] a_2 \cos_3 \gamma_2 \eta_1 \eta_2}{2} - \frac{3\cos[5\lambda_1 - 5\lambda_2] a_2 \cos_3 \gamma_2 \eta_1 \eta_2}{2} - \frac{3\cos[5\lambda_1 - 5\lambda_2] a_2 \cos_3 \gamma_2 \eta_1 \eta_2}{2} - \frac{3\cos[5\lambda_1 - 5\lambda_2] a_2 \cos_3 \gamma_2 \eta_1 \eta_2}{2} - \frac{3\cos[5\lambda_1 - 5\lambda_2] a_2 \cos_3 \gamma_2 \eta_1 \eta_2}{2} - \frac{3\cos[5\lambda_1 - 5\lambda_2] a_2 \cos_3 \gamma_2 \eta_1 \eta_2}{2} - \frac{3\cos[5\lambda_1 - 5\lambda_2] a_2 \cos_3 \gamma_2 \eta_1 \eta_2}{2} - \frac{3\cos[5\lambda_1 - 5\lambda_2] a_2 \cos_3 \gamma_2 \eta_1 \eta_2}{2} - \frac{3\cos[5\lambda_1 - 5\lambda_2] a_2 \cos_3 \gamma_2 \eta_1 \eta_2}{2} - \frac{3\cos[5\lambda_1 - 5\lambda_2] a_2 \cos_3 \gamma_2 \eta_1 \eta_2}{2} - \frac{3\cos[5\lambda_1 - 5\lambda_2] a_2 \cos_3 \gamma_2 \eta_1 \eta_2}{2} - \frac{3\cos[5\lambda_1 - 5\lambda_2] a_2 \cos_3 \gamma_2 \eta_1 \eta_2}{2} - \frac{3\cos[5\lambda_1 - 5\lambda_2] a_2 \cos_3 \gamma_2 \eta_1 \eta_2}{2} - \frac{3\cos[5\lambda_1 - 5\lambda_2] a_2 \cos_3 \gamma_2 \eta_1 \eta_2}{2} - \frac{3\cos[5\lambda_1 - 5\lambda_2] a_2 \cos_3 \gamma_2 \eta_1 \eta_2}{2} - \frac{3\cos[5\lambda_1 - 5\lambda_2] a_2 \cos_3 \gamma_2 \eta_1 \eta_2}{2} - \frac{3\cos[5\lambda_1 - 5\lambda_2] a_2 \cos_3 \gamma_2 \eta_1 \eta_2}{2} - \frac{3\cos[5\lambda_1 - 5\lambda_2] a_2 \cos_3 \gamma_2 \eta_1 \eta_2}{2} - \frac{3\cos[5\lambda_1 - 5\lambda_2] a_2 \cos_3 \gamma_2 \eta_1 \eta_2}{2} - \frac{3\cos[5\lambda_1 - 5\lambda_2] a_2 \cos_3 \gamma_2 \eta_1 \eta_2}{2} - \frac{3\cos[5\lambda_1 - 5\lambda_2] a_2 \cos_3 \gamma_2 \eta_1 \eta_2}{2} - \frac{3\cos[5\lambda_1 - 5\lambda_2] a_2 \cos_3 \gamma_2 \eta_1 \eta_2}{2} - \frac{3\cos[5\lambda_1 - 5\lambda_2] a_2 \cos_3 \gamma_2 \eta_1 \eta_2}{2} - \frac{3\cos[5\lambda_1 - 5\lambda_2] a_2 \cos_3 \gamma_2 \eta_1 \eta_2}{2} - \frac{3\cos[5\lambda_1 - 5\lambda_2] a_2 \cos_3 \gamma_2 \eta_1 \eta_2}{2} - \frac{3\cos[5\lambda_1 - 5\lambda_2] a_2 \cos_3 \gamma_2 \eta_1 \eta_2}{2} - \frac{3\cos[5\lambda_1 - 5\lambda_2] a_2 \cos_3 \gamma_2 \eta_1 \eta_2}{2} - \frac{3\cos[5\lambda_1 - 5\lambda_2] a_2 \cos_3 \gamma_2 \eta_1 \eta_2}{2} - \frac{3\cos[5\lambda_1 - 5\lambda_2] a_2 \cos_3 \gamma_2 \eta_1 \eta_2}{2} - \frac{3\cos[5\lambda_1 - 5\lambda_2] a_2 \cos_3 \gamma_2 \eta_1 \eta_2}{2} - \frac{3\cos[5\lambda_1 - 5\lambda_2] a_2 \cos_3 \gamma_2 \eta_1 \eta_2}{2} - \frac{3\cos[5\lambda_1 - 5\lambda_2] a_2 \cos_3 \gamma_2 \eta_1 \eta_2}{2} - \frac{3\cos[5\lambda_1 - 5\lambda_2] a_2 \cos_3 \gamma_2 \eta_1 \eta_2}{2} - \frac{3\cos[5\lambda_1 - 5\lambda_2] a_2 \cos_3 \gamma_2 \eta_1 \eta_2}{2} - \frac{3\cos[5\lambda_1 - 5\lambda_2] a_2 \cos_3 \gamma_2 \eta_2}{2} - \frac{3\cos[5\lambda_1 - 5\lambda_2] a_2 \cos_3 \gamma_2 \eta_2}{2} - \frac{3\cos[5\lambda_1 - 5\lambda_2] a_2 \cos_3 \gamma_2 \eta_2}{2} - \frac{3\cos[5\lambda_1 - 5\lambda_2] a_2 \cos_3 \gamma_2}{2} - \frac{3\cos[5\lambda_1 - 5\lambda_2] a_2 \cos_3 \gamma_$ $8 a_1 \gamma_1 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$ $8 a_1 \gamma_1 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$ $\frac{3\cos[\lambda_1 - 3\lambda_2] a_2 \cos[\gamma_2 \eta_1 \eta_2}{2} = \frac{9\cos[3\lambda_1 - 3\lambda_2] a_2 \cos[\gamma_2 \eta_1 \eta_2}{2}$ $8 a_1 \gamma_1 \sqrt{\Lambda_1} \sqrt{\Lambda_2} \qquad 4 a_1 \gamma_1 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$ $\frac{3\cos[5\lambda_1 - 3\lambda_2] a_2\cos_3\gamma_2\eta_1\eta_2}{3\cos[\lambda_1 - \lambda_2] a_2\cos_3\gamma_2\eta_1\eta_2} + \frac{3\cos[\lambda_1 - \lambda_2] a_2\cos_3\gamma_2\eta_1\eta_2}{3\cos(\lambda_1 - \lambda_2)} + \frac{3\cos[\lambda_1 - \lambda_2] a_2\cos_3\gamma_2\eta_1}{3\cos(\lambda_1 - \lambda_2)} + \frac{3\cos[\lambda_1 - \lambda_2] a_2\cos_3\gamma_2\eta_1}{3\cos(\lambda_1 - \lambda_2)} + \frac{3\cos[\lambda_1 - \lambda_2] a_2\cos_3\gamma_2\eta_2}{3\cos(\lambda_1 - \lambda_2)} + \frac{3\cos[\lambda_1 - \lambda_2] a_2\cos_3\gamma_2\eta_1}{3\cos(\lambda_1 - \lambda_2)} + \frac{3\cos[\lambda_1 - \lambda_2] a_2\cos_3\gamma_2\eta_2}{3\cos(\lambda_1 - \lambda_2)} + \frac{3\cos[\lambda_1 - \lambda_2] a_2\cos_3\gamma_2}{3\cos(\lambda_1 - \lambda_2)} + \frac{3\cos[\lambda_1 - \lambda_2] a_2\cos_3\gamma_2}{3\cos(\lambda_1 - \lambda_2)} + \frac{3\cos[\lambda_1 - \lambda_2] a_2\cos_3\gamma_2}{3\cos(\lambda_1 - \lambda_2)} + \frac{3\cos[\lambda_1 - \lambda_2] a_2\cos_3\gamma_2} + \frac{3\cos[\lambda_1 - \lambda_2] a_2\cos_3\gamma_2}{3\cos(\lambda_1 - \lambda_2)} + \frac{3\cos[\lambda_1 - \lambda_2] a_2\cos_3\gamma_2} + \frac{3\cos[\lambda_$ $8 a_1 \gamma_1 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$ $8 a_1 \gamma_1 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$ $\frac{9\cos[3\lambda_1-\lambda_2]a_2\cos_3\gamma_2\eta_1\eta_2}{2} = \frac{3\sin[3\lambda_1-\lambda_2]B0_0\eta_1\xi_1}{2} = \frac{\sin[\lambda_1+\lambda_2]B0_0\eta_1\xi_1}{2} = \frac{\sin[\lambda_1+\lambda_2]B0_0\eta_1\xi_1}{2} = \frac{1}{2}$ 8 Λ1 8 A₁ $8 a_1 \gamma_1 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$ $\frac{3\cos[\lambda_1-\lambda_2]\sin[3\lambda_1-\lambda_2]B0_1\eta_1\xi_1}{2} = \frac{\cos[\lambda_1-\lambda_2]\sin[\lambda_1+\lambda_2]B0_1\eta_1\xi_1}{2} = \frac{\cos[\lambda_1-\lambda_2]B0_1\eta_1\xi_1}{2} = \frac{\cos[\lambda_1$ **4** Λ₁ 4 A1 $\frac{3\cos[2(\lambda_1-\lambda_2)]\sin[3\lambda_1-\lambda_2]\operatorname{BO}_2\eta_1\xi_1}{2\cos[2(\lambda_1-\lambda_2)]\sin[\lambda_1+\lambda_2]\operatorname{BO}_2\eta_1\xi_1} - \frac{\cos[2(\lambda_1-\lambda_2)]\sin[\lambda_1+\lambda_2]\operatorname{BO}_2\eta_1\xi_1}{2\cos[2(\lambda_1-\lambda_2)]\sin[\lambda_1+\lambda_2]\operatorname{BO}_2\eta_1\xi_1} - \frac{\cos[2(\lambda_1-\lambda_2)]\cos[\lambda_1+\lambda_2]\operatorname{BO}_2\eta_1\xi_1}{2\cos[2(\lambda_1-\lambda_2)]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\operatorname{BO}_2\eta_1\xi_1} - \frac{\cos[2(\lambda_1-\lambda_2)]\cos[\lambda_1+\lambda_2]\operatorname{BO}_2\eta_1\xi_1}{2\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_2+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_1+\lambda_2]\cos[\lambda_2+\lambda_$ **4** Δ₁ 4 Λ₁ $3\cos[3(\lambda_1 - \lambda_2)]\sin[3\lambda_1 - \lambda_2]BO_3\eta_1\xi_1 - \cos[3(\lambda_1 - \lambda_2)]\sin[\lambda_1 + \lambda_2]BO_3\eta_1\xi_1$ $4 \Lambda_1$ $4 \Lambda_1$ $\frac{9\sin[2\lambda_1]\cos_0\eta_1\xi_1}{2} = \frac{3\sin[4\lambda_1 - 2\lambda_2]\cos_0\eta_1\xi_1}{27\sin[2\lambda_2]\cos_0\eta_1\xi_1} = \frac{27\sin[2\lambda_2]\cos_0\eta_1\xi_1}{27\sin[2\lambda_2]\cos_0\eta_1\xi_1} = \frac{1}{2}$ 16 A₁ 8 Λ1 $16 \Lambda_1$ $\frac{27 \sin [\lambda_1 - 3 \lambda_2] \cos \eta_1 \xi_1}{2} = \frac{3 \sin [5 \lambda_1 - 3 \lambda_2] \cos \eta_1 \xi_1}{2} + \frac{15 \sin [3 \lambda_1 - \lambda_2] \cos \eta_1 \xi_1}{2} = \frac{15 \sin [3 \lambda_1 - \lambda_2] \cos \eta_1 \xi_1}{2} = \frac{15 \sin [3 \lambda_1 - \lambda_2] \cos \eta_1 \xi_1}{2} = \frac{15 \sin [3 \lambda_1 - \lambda_2] \cos \eta_1 \xi_1}{2} = \frac{15 \sin [3 \lambda_1 - \lambda_2] \cos \eta_1 \xi_1}{2} = \frac{15 \sin [3 \lambda_1 - \lambda_2] \cos \eta_1 \xi_1}{2} = \frac{15 \sin [3 \lambda_1 - \lambda_2] \cos \eta_1 \xi_1}{2} = \frac{15 \sin [3 \lambda_1 - \lambda_2] \cos \eta_1 \xi_1}{2} = \frac{15 \sin [3 \lambda_1 - \lambda_2] \cos \eta_1 \xi_1}{2} = \frac{15 \sin [3 \lambda_1 - \lambda_2] \cos \eta_1 \xi_1}{2} = \frac{15 \sin [3 \lambda_1 - \lambda_2] \cos \eta_1 \xi_1}{2} = \frac{15 \sin [3 \lambda_1 - \lambda_2] \cos \eta_1 \xi_1}{2} = \frac{15 \sin [3 \lambda_1 - \lambda_2] \cos \eta_1 \xi_1}{2} = \frac{15 \sin [3 \lambda_1 - \lambda_2] \cos \eta_1 \xi_1}{2} = \frac{15 \sin [3 \lambda_1 - \lambda_2] \cos \eta_1 \xi_1}{2} = \frac{15 \sin [3 \lambda_1 - \lambda_2] \cos \eta_1 \xi_1}{2} = \frac{15 \sin [3 \lambda_1 - \lambda_2] \cos \eta_1 \xi_1}{2} = \frac{15 \sin [3 \lambda_1 - \lambda_2] \cos \eta_1 \xi_1}{2} = \frac{15 \sin [3 \lambda_1 - \lambda_2] \cos \eta_1 \xi_1}{2} = \frac{15 \sin [3 \lambda_1 - \lambda_2] \cos \eta_1 \xi_1}{2} = \frac{15 \sin [3 \lambda_1 - \lambda_2] \cos \eta_1 \xi_1}{2} = \frac{15 \sin [3 \lambda_1 - \lambda_2] \cos \eta_1 \xi_1}{2} = \frac{15 \sin [3 \lambda_1 - \lambda_2] \cos \eta_1 \xi_1}{2} = \frac{15 \sin [3 \lambda_1 - \lambda_2] \cos \eta_1 \xi_1}{2} = \frac{15 \sin [3 \lambda_1 - \lambda_2] \cos \eta_1 \xi_1}{2} = \frac{15 \sin [3 \lambda_1 - \lambda_2] \cos \eta_1 \xi_1}{2} = \frac{15 \sin [3 \lambda_1 - \lambda_2] \cos \eta_1 \xi_1}{2} = \frac{15 \sin [3 \lambda_1 - \lambda_2] \cos \eta_1 \xi_1}{2} = \frac{15 \sin [3 \lambda_1 - \lambda_2] \cos \eta_1 \xi_1}{2} = \frac{15 \sin [3 \lambda_1 - \lambda_2] \cos \eta_1 \xi_1}{2} = \frac{15 \sin [3 \lambda_1 - \lambda_2] \cos \eta_1 \xi_1}{2} = \frac{15 \sin [3 \lambda_1 - \lambda_2] \cos \eta_1 \xi_1}{2} = \frac{15 \sin [3 \lambda_1 - \lambda_2] \cos \eta_1 \xi_1}{2} = \frac{15 \sin [3 \lambda_1 - \lambda_2] \cos \eta_1 \xi_1}{2} = \frac{15 \sin [3 \lambda_1 - \lambda_2] \cos \eta_1 \xi_1}{2} = \frac{15 \sin [3 \lambda_1 - \lambda_2] \cos \eta_1 \xi_1}{2} = \frac{15 \sin [3 \lambda_1 - \lambda_2] \cos \eta_1 \xi_1}{2} = \frac{15 \sin [3 \lambda_1 - \lambda_2] \cos \eta_1 \xi_1}{2} = \frac{15 \sin [3 \lambda_1 - \lambda_2] \cos \eta_1 \xi_1}{2} = \frac{15 \sin [3 \lambda_1 - \lambda_2] \cos \eta_1 \xi_1}{2} = \frac{15 \sin [3 \lambda_1 - \lambda_2] \cos \eta_1 \xi_1}{2} = \frac{15 \sin [3 \lambda_1 - \lambda_2] \cos \eta_1 \xi_1}{2} = \frac{15 \sin [3 \lambda_1 - \lambda_2] \cos \eta_1 \xi_1}{2} = \frac{15 \sin [3 \lambda_1 - \lambda_2] \cos \eta_1 \xi_1}{2} = \frac{15 \sin [3 \lambda_1 - \lambda_2] \cos \eta_1 \xi_1}{2} = \frac{15 \sin [3 \lambda_1 - \lambda_2] \cos \eta_1 \xi_1}{2} = \frac{15 \sin [3 \lambda_1 - \lambda_2] \cos \eta_1 \xi_1}{2} = \frac{15 \sin [3 \lambda_1 - \lambda_2] \cos \eta_1 \xi_1}{2} = \frac{15 \sin [3 \lambda_1 - \lambda_2] \cos \eta_1 \xi_1}{2} = \frac{15 \sin [3 \lambda_1 - \lambda_2] \cos \eta_1 \xi_1}{2} = \frac{15 \sin [3 \lambda_1 - \lambda_2] \cos \eta_1 \xi_1}{2} = \frac{15 \sin [3 \lambda_1 - \lambda_2] \cos \eta_1 \xi_1}{2} = \frac{15 \sin [3 \lambda_1 - \lambda_2] \cos \eta_1}{2} = \frac{15 \sin [3 \lambda_$ 16 A₁ 16 A₁ 16 A1 $\frac{9\sin[\lambda_1 + \lambda_2]\cos_1\eta_1\xi_1}{1 - 4\lambda_2\cos_2\eta_1\xi_1} = \frac{15\sin[2\lambda_1]\cos_2\eta_1\xi_1}{1 - 4\lambda_2\cos_2\eta_1\xi_1} = \frac{27\sin[2\lambda_1 - 4\lambda_2]\cos_2\eta_1\xi_1}{1 - 4\lambda_2\cos_2\eta_1\xi_1} = \frac{15\sin[2\lambda_1]\cos_2\eta_1\xi_1}{1 - 4\lambda_2\cos_2\eta_1\xi_1} = \frac{15\sin[2\lambda_1]\cos_2\eta_1}{1 - 4\lambda_2\cos_2\eta_1} = \frac{15\sin[2\lambda_1]\cos_2\eta_1}{1 - 4\lambda_2\cos_2\eta_1} = \frac{15\sin[2\lambda_1]\cos_2\eta_1}{1 - 4\lambda_2\cos_2\eta_1} = \frac{15\sin[2\lambda_1]\cos_2\eta_1}{1 - 4\lambda_2\cos_2\eta_1} = \frac{15\sin[2\lambda_2]\cos_2\eta_1}{1 - 4\lambda_2\cos_2\eta_1} = \frac{15\sin[2\lambda_2]\cos_2\eta_1}{1 - 4\lambda_2\cos_2\eta_1} = \frac{15\sin[2\lambda_2]\cos_2\eta_1} = \frac{15\sin[2\lambda_2]\cos_2\eta_2} = \frac{15\sin[2\lambda_2]\cos_2\eta_2} = \frac{15\sin[2\lambda_2]\cos$ 16 A₁ 8 Λ₁ 16 A1 $\frac{3\sin[6\lambda_1 - 4\lambda_2]\cos_2\eta_1\xi_1}{4} + \frac{9\sin[4\lambda_1 - 2\lambda_2]\cos_2\eta_1\xi_1}{4} + \frac{9\sin[2\lambda_2]\cos_2\eta_1\xi_1}{4} + \frac{9\sin[2\lambda_2]\cos_2\eta_1}{4} + \frac{9$ 16 A₁ 8 Λ1 8 A1 $\frac{27 \sin [3 \lambda_1 - 5 \lambda_2] \cos_3 \eta_1 \xi_1}{2} = \frac{3 \sin [7 \lambda_1 - 5 \lambda_2] \cos_3 \eta_1 \xi_1}{2} = \frac{9 \sin [\lambda_1 - 3 \lambda_2] \cos_3 \eta_1 \xi_1}{2} + \frac{1}{2} \frac{1}{$ 16 A1 16 A₁ 8 Λ1 $\frac{9\sin[5\lambda_1 - 3\lambda_2]\cos_3\eta_1\xi_1}{2} = \frac{27\sin[3\lambda_1 - \lambda_2]\cos_3\eta_1\xi_1}{2} = \frac{3\sin[\lambda_1 + \lambda_2]\cos_3\eta_1\xi_1}{2} = \frac{3\sin[\lambda_1 + \lambda_2]\cos_3\eta_1\xi_1}{2} = \frac{1}{2}$ 8 Λ1 16 A₁ 16 A1 $\frac{3\sin[2\lambda_1]a_1^2C0_0\gamma_1^2\eta_1\xi_1}{3\sin[3\lambda_1-\lambda_2]a_1^2C0_1\gamma_1^2\eta_1\xi_1} = \frac{3\sin[\lambda_1+\lambda_2]a_1^2C0_1\gamma_1^2\eta_1\xi_1}{3\sin[\lambda_1+\lambda_2]a_1^2C0_1\gamma_1^2\eta_1\xi_1}$ 4 a₂ γ₂ Λ₁ 4 a₂ γ₂ Λ₁ 4 a 3 γ 3 Λ1

$$\begin{split} \frac{3 \sin[4 \lambda_1 - 2 \lambda_2] a_1^2 \cos_2 \gamma_1^2 \eta_1 \xi_1}{4 a_1^2 \gamma_2^2 \Lambda_1} & \frac{3 \sin[5 \lambda_1 - 3 \lambda_2] a_1^2 \cos_2 \gamma_1 \eta_1 \xi_1}{4 a_1^2 \gamma_1^2 \Lambda_1} \\ \frac{3 \sin[\lambda_1 - 3 \lambda_2] a_1^2 \cos_2 \gamma_1 \eta_1 \xi_1}{4 a_1^2 \gamma_1^2 \Lambda_1} & \frac{3 \sin[5 \lambda_1 - 3 \lambda_2] a_1^2 \cos_2 \gamma_1 \eta_1 \xi_1}{2 a_1^2 \gamma_2 \Lambda_1} \\ \frac{3 \cos[\lambda_1] \sin[\lambda_1] a_1 B_0 \gamma_1 \eta_1 \xi_1}{a_2 \gamma_2 \Lambda_1} & \frac{3 \sin[2 \lambda_1 - \lambda_2] \sin[\lambda_1] a_1 B_0 \gamma_1 \eta_1 \xi_1}{a_2 \gamma_2 \Lambda_1} \\ \frac{2 a_1^2 \gamma_2 \Lambda_1}{a_2 \gamma_2 \Lambda_1} & \frac{3 \sin[2 \lambda_1] a_1 B_0 \gamma_1 \eta_1 \xi_1}{a_2 \gamma_2 \Lambda_1} \\ \frac{3 \sin[\lambda_1 - \lambda_2] \sin[\lambda_1] a_1 B_0 \gamma_1 \eta_1 \xi_1}{a_2 \gamma_2 \Lambda_1} & \frac{3 \sin[2 \lambda_1] a_1 \cos_1 \gamma_1 \eta_1 \xi_1}{a_2 \gamma_2 \Lambda_1} \\ \frac{4 a_2 \gamma_2 \Lambda_1}{a_2 \gamma_2 \Lambda_1} & \frac{4 a_2 \gamma_2 \Lambda_1}{a_2 \gamma_2 \Lambda_1} \\ \frac{4 a_2 \gamma_2 \Lambda_1}{a_2 \gamma_2 \Lambda_1} & \frac{4 a_2 \gamma_2 \Lambda_1}{a_2 \gamma_2 \Lambda_1} \\ \frac{4 a_2 \gamma_2 \Lambda_1}{a_2 \gamma_2 \Lambda_1} & \frac{4 a_2 \gamma_2 \Lambda_1}{a_2 \gamma_2 \Lambda_1} \\ \frac{9 \sin[\lambda_1 - 3 \lambda_2] a_1 \cos_2 \gamma_1 \eta_1 \xi_1}{a_2 g_1 \eta_1 \eta_1 \xi_1} & \frac{3 \sin[5 \lambda_1 - 3 \lambda_2] a_1 \cos_2 \gamma_1 \eta_1 \xi_1}{a_2 \gamma_2 \Lambda_1} \\ \frac{9 \sin[\lambda_1 - 3 \lambda_2] a_1 \cos_2 \gamma_1 \eta_1 \xi_1}{a_2 \gamma_2 \Lambda_1} & \frac{3 \sin[2 \lambda_2] a_1 \cos_2 \gamma_1 \eta_1 \xi_1}{a_2 \gamma_2 \Lambda_1} \\ \frac{9 \sin[\lambda_1 - 3 \lambda_2] a_1 \cos_2 \gamma_1 \eta_1 \xi_1}{a_2 \gamma_2 \Lambda_1} & \frac{3 \sin[2 \lambda_2] a_1 \cos_2 \gamma_1 \eta_1 \xi_1}{a_2 \gamma_2 \Lambda_1} \\ \frac{9 \sin[\lambda_1 - 2 \lambda_2] a_1 \cos_2 \gamma_1 \eta_1 \xi_1}{a_2 \gamma_2 \Lambda_1} & \frac{3 \sin[2 \lambda_2] a_1 \cos_2 \gamma_1 \eta_1 \xi_1}{a_2 \gamma_2 \Lambda_1} \\ \frac{9 \sin[2 \Lambda_1 - 4 \lambda_2] a_1 \cos_2 \gamma_1 \eta_1 \xi_1}{a_2 \gamma_2 \Lambda_1} & \frac{3 \sin[2 \lambda_2] a_1 \cos_2 \gamma_1 \eta_1 \xi_1}{a_2 \gamma_2 \Lambda_1} \\ \frac{9 \sin[2 \Lambda_1 - 2 \lambda_2] \cos(2 \lambda_1 - \lambda_2] B_0 \xi_1}{a_2 \gamma_2 \Lambda_1} & \frac{3 \cos[\lambda_1 - \lambda_2] \cos(\lambda_2] B_0 \xi_1}{a_2 \gamma_2 \Lambda_1} \\ \frac{3 \cos[\lambda_1 A_0] \cos(2 \lambda_1 - \lambda_2] B_0 \xi_1}{a_2 \gamma_2 \sqrt{\Lambda_1}} & \frac{3 \cos[2 (\lambda_1 - \lambda_2] \cos(\lambda_2] B_0 \xi_1}{a_2 \gamma_2 \sqrt{\Lambda_1}} \\ \frac{\cos[\lambda_1] \cos(2 (\lambda_1 - \lambda_2)] a_1 B_0 \gamma_1 \xi_1}{a_2 \gamma_2 \sqrt{\Lambda_1}} \\ \frac{3 \sin[2 \lambda_1] B_0 \eta_1 \xi_1}{a_2 \gamma_2 \sqrt{\Lambda_1}} & \frac{3 \sin[2 \lambda_1 - \lambda_2] a_1 B_0 \gamma_1 \xi_1}{a_2 \gamma_2 \sqrt{\Lambda_1}} \\ \frac{3 \sin[2 \lambda_1] B_0 \eta_1 \xi_1}{a_2 \gamma_2 \sqrt{\Lambda_1}} & \frac{3 \cos[2 (\lambda_1 - \lambda_2)] \cos(\lambda_2] B_0 \xi_1}{a_2 \gamma_2 \sqrt{\Lambda_1}} \\ \frac{3 \cos[\lambda_1 - \lambda_2] \sin[2 \lambda_1] B_0 \eta_2 \xi_1}{a_2 \gamma_2 \sqrt{\Lambda_1}} & \frac{3 \sin[2 \lambda_1 - \lambda_2] B_0 \eta_2 \xi_1}{a_2 \gamma_2 \sqrt{\Lambda_1}} \\ \frac{3 \cos[\lambda_1 - \lambda_2] \sin[2 \lambda_1] B_0 \eta_2 \xi_1}{a_2 \gamma_2 \sqrt{\Lambda_1}} & \frac{3 \sin[2 \lambda_1 - \lambda_2] B_0 \eta_2 \xi_1}{a_2 \gamma_2 \sqrt{\Lambda_1}} \\ \frac{3 \cos[\lambda_1 - \lambda_2] \sin[2 \lambda_1] B_0 \eta_2 \xi_1}{a_2 \gamma_2 \sqrt{\Lambda_1}}$$

$\frac{21\sin[\lambda_1 + \lambda_2]\cos_0\eta_2\xi_1}{2} = \frac{33\sin[2\lambda_1]\cos_\eta_2\xi_1}{2} = \frac{9\sin[2\lambda_1 - 4\lambda_2]\cos_\eta_2\xi_1}{2} + \frac{1}{2}$
$8\sqrt{\Lambda_1}\sqrt{\Lambda_2}$ $16\sqrt{\Lambda_1}\sqrt{\Lambda_2}$ $16\sqrt{\Lambda_1}\sqrt{\Lambda_2}$
$3\sin[4\lambda_1 - 4\lambda_2] \cos_1\eta_2 \xi_1 = \frac{15\sin[2\lambda_1 - 2\lambda_2] \cos_1\eta_2 \xi_1}{15\sin[2\lambda_1 - 2\lambda_2] \cos_1\eta_2 \xi_1} = \frac{9\sin[4\lambda_1 - 2\lambda_2] \cos_1\eta_2 \xi_1}{15\sin[2\lambda_1 - 2\lambda_2] \cos_1\eta_2 \xi_1}$
$16\sqrt{\Lambda_1}\sqrt{\Lambda_2}$ $8\sqrt{\Lambda_1}\sqrt{\Lambda_2}$ $16\sqrt{\Lambda_1}\sqrt{\Lambda_2}$
$33 \sin[2 \lambda_2] \operatorname{CO}_1 \eta_2 \xi_1 = 9 \sin[3 \lambda_1 - 5 \lambda_2] \operatorname{CO}_2 \eta_2 \xi_1 + 3 \sin[5 \lambda_1 - 5 \lambda_2] \operatorname{CO}_2 \eta_2 \xi_1$
$16\sqrt{\Lambda_1}\sqrt{\Lambda_2}$ $16\sqrt{\Lambda_1}\sqrt{\Lambda_2}$ $16\sqrt{\Lambda_1}\sqrt{\Lambda_2}$
$21\sin[\lambda_1 - 3\lambda_2]\cos_2\eta_2\xi_1 = \frac{33\sin[3\lambda_1 - 3\lambda_2]\cos_2\eta_2\xi_1}{33\sin[3\lambda_1 - 3\lambda_2]\cos_2\eta_2\xi_1} + \frac{9\sin[5\lambda_1 - 3\lambda_2]\cos_2\eta_2\xi_1}{33\sin[3\lambda_1 - 3\lambda_2]\cos_2\eta_2\xi_1} + \frac{3\sin[5\lambda_1 - 3\lambda_2]\cos_2\eta_2\xi_1}{33\sin[3\lambda_1 - 3\lambda_2]\cos_2\eta_2} + \frac{3\sin[5\lambda_1 - 3\lambda_2]\cos_2\eta_2}{33\sin[3\lambda_1 - 3\lambda_2]\cos_2\eta_2} + \frac{3\sin[5\lambda_1 - 3\lambda_2]\cos_2\eta_2} + \frac{3\sin[5\lambda_1 - 3\lambda_2]\cos_2\eta_2}{33\sin[3\lambda_1 - 3\lambda_2]\cos_2\eta_2} + \frac{3\sin[5\lambda_1 - 3\lambda_2]\cos_2\eta_2} + 3\sin[5\lambda_1 - 3\lambda_2]\cos$
$8\sqrt{\Lambda_1}\sqrt{\Lambda_2}$ $16\sqrt{\Lambda_1}\sqrt{\Lambda_2}$ $16\sqrt{\Lambda_1}\sqrt{\Lambda_2}$
$\frac{9\sin[\lambda_1-\lambda_2]\cos_2\eta_2\xi_1}{2} = \frac{21\sin[3\lambda_1-\lambda_2]\cos_2\eta_2\xi_1}{2} + \frac{9\sin[\lambda_1+\lambda_2]\cos_2\eta_2\xi_1}{2} + \frac{9\sin[\lambda_1+\lambda_2]\cos_2\eta_2}{2} + \frac{9\sin[\lambda_1+\lambda_2]\cos_2\eta_2}{2} + \frac{9\sin[\lambda_1+\lambda_2]\cos_2\eta_2}}{2} + \frac{9\sin[\lambda_1+\lambda_2]\cos_2\eta_2}{2} + \frac{9\sin[\lambda_1+\lambda_2]\cos_2\eta_2}{2} + \frac{9\sin[\lambda_1+\lambda_2]\cos_2\eta_2}{2} + $
$4 \sqrt{\Lambda_1} \sqrt{\Lambda_2} \qquad \qquad 8 \sqrt{\Lambda_1} \sqrt{\Lambda_2} \qquad \qquad 8 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$
$\frac{9\sin[2\lambda_1]\cos_3\eta_2\xi_1}{2} = \frac{9\sin[4\lambda_1 - 6\lambda_2]\cos_3\eta_2\xi_1}{2} + \frac{3\sin[6\lambda_1 - 6\lambda_2]\cos_3\eta_2}} + \frac{3\sin[6\lambda_1 - 6\lambda_2]\cos_3\eta_2}{2} + \frac{3\sin[6\lambda_1 - 6\lambda_2]\cos_3\eta_2}} + \frac{3\sin[6\lambda_1 - 6\lambda_2]\cos_3\eta_2} + \frac{3\sin[6\lambda_1 - 6\lambda_2]\cos_3\eta_2}} + \frac{3\sin[6\lambda_1 - 6\lambda_2]\cos_3\eta_2}} + \frac{3\sin[6\lambda_1 - 6\lambda_2]\cos_3\eta_2} + 3\sin[6\lambda$
$16 \sqrt{\Lambda_1} \sqrt{\Lambda_2} \qquad 16 \sqrt{\Lambda_1} \sqrt{\Lambda_2} \qquad 16 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$
$\frac{21\sin[2\lambda_1 - 4\lambda_2]\cos_3\eta_2\xi_1}{2} = \frac{33\sin[4\lambda_1 - 4\lambda_2]\cos_3\eta_2\xi_1}{2} + \frac{9\sin[6\lambda_1 - 4\lambda_2]\cos_3\eta_2}{2} + 9\sin[6\lambda_1 - 4\lambda_2]$
$8 \sqrt{\Lambda_1} \sqrt{\Lambda_2} \qquad 16 \sqrt{\Lambda_1} \sqrt{\Lambda_2} \qquad 16 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$
$\frac{33\sin[2\lambda_1 - 2\lambda_2]\cos\eta_2\xi_1}{2} = \frac{21\sin[4\lambda_1 - 2\lambda_2]\cos\eta_2\xi_1}{2} + \frac{9\sin[2\lambda_2]\cos\eta_2\xi_1}{2} + 9\sin[2\lambda_2]\cos\eta$
$16\sqrt{\Lambda_1}\sqrt{\Lambda_2} \qquad 8\sqrt{\Lambda_1}\sqrt{\Lambda_2} \qquad 16\sqrt{\Lambda_1}\sqrt{\Lambda_2}$
$\frac{9\sin[2\lambda_1]a_1C0_0\gamma_1\eta_2\xi_1}{4} + \frac{3\sin[2\lambda_1 - 2\lambda_2]a_1C0_0\gamma_1\eta_2\xi_1}{4} - \frac{3\sin[2\lambda_2]a_1C0_0\gamma_1\eta_2\xi_1}{4} + 3\sin[2\lambda_2]a_1C0_0\gamma_1\eta_2\xi$
$8 a_2 \gamma_2 \sqrt{\Lambda_1} \sqrt{\Lambda_2} \qquad \qquad 8 a_2 \gamma_2 \sqrt{\Lambda_1} \sqrt{\Lambda_2} \qquad \qquad 8 a_2 \gamma_2 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$
$\frac{3 \sin[\lambda_1 - 3 \lambda_2] a_1 C O_1 \gamma_1 \eta_2 \xi_1}{4 + 3 \sin[3 \lambda_1 - 3 \lambda_2] a_1 C O_1 \gamma_1 \eta_2 \xi_1} + \frac{3 \sin[3 \lambda_1 - 3 \lambda_2] a_1 C O_1 \gamma_1 \eta_2 \xi_1}{4 + 3 \sin[3 \lambda_1 - 3 \lambda_2] a_1 C O_1 \gamma_1 \eta_2 \xi_1} + \frac{3 \sin[3 \lambda_1 - 3 \lambda_2] a_1 C O_1 \gamma_1 \eta_2 \xi_1}{4 + 3 \sin[3 \lambda_1 - 3 \lambda_2] a_1 C O_1 \gamma_1 \eta_2 \xi_1} + \frac{3 \sin[3 \lambda_1 - 3 \lambda_2] a_1 C O_1 \gamma_1 \eta_2 \xi_1}{4 + 3 \sin[3 \lambda_1 - 3 \lambda_2] a_1 C O_1 \gamma_1 \eta_2 \xi_1} + \frac{3 \sin[3 \lambda_1 - 3 \lambda_2] a_1 C O_1 \gamma_1 \eta_2 \xi_1}{4 + 3 \sin[3 \lambda_1 - 3 \lambda_2] a_1 C O_1 \gamma_1 \eta_2 \xi_1} + \frac{3 \sin[3 \lambda_1 - 3 \lambda_2] a_1 C O_1 \gamma_1 \eta_2 \xi_1}{4 + 3 \sin[3 \lambda_1 - 3 \lambda_2] a_1 C O_1 \gamma_1 \eta_2 \xi_1} + \frac{3 \sin[3 \lambda_1 - 3 \lambda_2] a_1 C O_1 \gamma_1 \eta_2 \xi_1}{4 + 3 \sin[3 \lambda_1 - 3 \lambda_2] a_1 C O_1 \gamma_1 \eta_2 \xi_1} + \frac{3 \sin[3 \lambda_1 - 3 \lambda_2] a_1 C O_1 \gamma_1 \eta_2 \xi_1}{4 + 3 \sin[3 \lambda_1 - 3 \lambda_2] a_1 C O_1 \gamma_1 \eta_2 \xi_1} + \frac{3 \sin[3 \lambda_1 - 3 \lambda_2] a_1 C O_1 \gamma_1 \eta_2 \xi_1}{4 + 3 \sin[3 \lambda_1 - 3 \lambda_2] a_1 C O_1 \gamma_1 \eta_2 \xi_1} + \frac{3 \sin[3 \lambda_1 - 3 \lambda_2] a_1 C O_1 \gamma_1 \eta_2 \xi_1}{4 + 3 \sin[3 \lambda_1 - 3 \lambda_2] a_1 C O_1 \gamma_1 \eta_2 \xi_1} + \frac{3 \sin[3 \lambda_1 - 3 \lambda_2] a_1 C O_1 \gamma_1 \eta_2 \xi_1}{4 + 3 \sin[3 \lambda_1 - 3 \lambda_2] a_1 C O_1 \gamma_1 \eta_2 \xi_1} + \frac{3 \sin[3 \lambda_1 - 3 \lambda_2] a_1 C O_1 \gamma_1 \eta_2 \xi_1}{4 + 3 \sin[3 \lambda_1 - 3 \lambda_2] a_1 C O_1 \gamma_1 \eta_2 \xi_1} + \frac{3 \sin[3 \lambda_1 - 3 \lambda_2] a_1 C O_1 \gamma_1 \eta_2 \xi_1}{4 + 3 \sin[3 \lambda_1 - 3 \lambda_2] a_1 C O_1 \gamma_1 \eta_2 \xi_1} + \frac{3 \sin[3 \lambda_1 - 3 \lambda_2] a_1 C O_1 \gamma_1 \eta_2 \xi_1}{4 + 3 \sin[3 \lambda_1 - 3 \lambda_2] a_1 C O_1 \gamma_1 \eta_2 \xi_1} + \frac{3 \sin[3 \lambda_1 - 3 \lambda_2] a_1 C O_1 \gamma_1 \eta_2 \xi_1}{4 + 3 \sin[3 \lambda_1 - 3 \lambda_2] a_1 C O_1 \gamma_1 \eta_2 \xi_1} + \frac{3 \sin[3 \lambda_1 - 3 \lambda_2] a_1 C O_1 \gamma_1 \eta_2 \xi_1}{4 + 3 \sin[3 \lambda_1 - 3 \sin[3 $
$8 a_2 \gamma_2 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$ $8 a_2 \gamma_2 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$
$\frac{3 \sin[\lambda_1 - \lambda_2] a_1 \operatorname{CO}_1 \gamma_1 \eta_2 \xi_1}{4 + \frac{9 \sin[3 \lambda_1 - \lambda_2] a_1 \operatorname{CO}_1 \gamma_1 \eta_2 \xi_1}{4 + \frac{9 \sin[3 \lambda_1 - \lambda_2] a_1 \operatorname{CO}_1 \gamma_1 \eta_2 \xi_1}{4 + \frac{9 \sin[3 \lambda_1 - \lambda_2] a_1 \operatorname{CO}_1 \gamma_1 \eta_2 \xi_1}{4 + \frac{9 \sin[3 \lambda_1 - \lambda_2] a_1 \operatorname{CO}_1 \gamma_1 \eta_2 \xi_1}{4 + \frac{9 \sin[3 \lambda_1 - \lambda_2] a_1 \operatorname{CO}_1 \gamma_1 \eta_2 \xi_1}{4 + \frac{9 \sin[3 \lambda_1 - \lambda_2] a_1 \operatorname{CO}_1 \gamma_1 \eta_2 \xi_1}{4 + \frac{9 \sin[3 \lambda_1 - \lambda_2] a_1 \operatorname{CO}_1 \gamma_1 \eta_2 \xi_1}{4 + \frac{9 \sin[3 \lambda_1 - \lambda_2] a_1 \operatorname{CO}_1 \gamma_1 \eta_2 \xi_1}{4 + \frac{9 \sin[3 \lambda_1 - \lambda_2] a_1 \operatorname{CO}_1 \gamma_1 \eta_2 \xi_1}{4 + \frac{9 \sin[3 \lambda_1 - \lambda_2] a_1 \operatorname{CO}_1 \gamma_1 \eta_2 \xi_1}{4 + \frac{9 \sin[3 \lambda_1 - \lambda_2] a_1 \operatorname{CO}_1 \gamma_1 \eta_2 \xi_1}{4 + \frac{9 \sin[3 \lambda_1 - \lambda_2] a_1 \operatorname{CO}_1 \gamma_1 \eta_2 \xi_1}{4 + \frac{9 \sin[3 \lambda_1 - \lambda_2] a_1 \operatorname{CO}_1 \gamma_1 \eta_2 \xi_1}{4 + \frac{9 \sin[3 \lambda_1 - \lambda_2] a_1 \operatorname{CO}_1 \gamma_1 \eta_2 \xi_1}{4 + \frac{9 \sin[3 \lambda_1 - \lambda_2] a_1 \operatorname{CO}_1 \gamma_1 \eta_2 \xi_1}{4 + \frac{9 \sin[3 \lambda_1 - \lambda_2] a_1 \operatorname{CO}_1 \gamma_1 \eta_2 \xi_1}{4 + \frac{9 \sin[3 \lambda_1 - \lambda_2] a_1 \operatorname{CO}_1 \gamma_1 \eta_2 \xi_1}{4 + \frac{9 \sin[3 \lambda_1 - \lambda_2] a_1 \operatorname{CO}_1 \gamma_1 \eta_2 \xi_1}{4 + \frac{9 \sin[3 \lambda_1 - \lambda_2] a_1 \operatorname{CO}_1 \gamma_1 \eta_2 \xi_1}{4 + \frac{9 \sin[3 \lambda_1 - \lambda_2] a_1 \operatorname{CO}_1 \gamma_1 \eta_2 \xi_1}{4 + \frac{9 \sin[3 \lambda_1 - \lambda_2] a_1 \operatorname{CO}_1 \gamma_1 \eta_2 \xi_1}{4 + \frac{9 \sin[3 \lambda_1 - \lambda_2] a_1 \operatorname{CO}_1 \gamma_1 \eta_2 \xi_1}{4 + \frac{9 \sin[3 \lambda_1 - \lambda_2] a_1 \operatorname{CO}_1 \gamma_1 \eta_2 \xi_1}{4 + \frac{9 \sin[3 \lambda_1 - \lambda_2] a_1 \operatorname{CO}_1 \gamma_1 \eta_2 \xi_1}{4 + \frac{9 \sin[3 \lambda_1 - \lambda_2] a_1 \operatorname{CO}_1 \gamma_1 \eta_2 \xi_1}{4 + \frac{9 \sin[3 \lambda_1 - \lambda_2] a_1 \operatorname{CO}_1 \gamma_1 \eta_2 \xi_1}{4 + \frac{9 \sin[3 \lambda_1 - \lambda_2] a_1 \operatorname{CO}_1 \gamma_1 \eta_2 \xi_1}{4 + \frac{9 \sin[3 \lambda_1 - \lambda_2] a_1 \operatorname{CO}_1 \gamma_1 \eta_2 \xi_1}{4 + \frac{9 \sin[3 \lambda_1 - \lambda_2] a_1 \operatorname{CO}_1 \gamma_1 \eta_2 \xi_1}{4 + \frac{9 \sin[3 \lambda_1 - \lambda_2] a_1 \operatorname{CO}_1 \gamma_1 \eta_2 \xi_1}{4 + \frac{9 \sin[3 \lambda_1 - \lambda_2] a_1 \operatorname{CO}_1 \gamma_1 \eta_2 \xi_1}{4 + \frac{9 \sin[3 \lambda_1 - \lambda_2] a_1 \operatorname{CO}_1 \gamma_1 \eta_2 \xi_1}{4 + \frac{9 \sin[3 \lambda_1 - \lambda_2] a_1 \operatorname{CO}_1 \gamma_1 \eta_2 \xi_1}{4 + \frac{9 \sin[3 \lambda_1 - \lambda_2] a_1 \operatorname{CO}_1 \gamma_1 \eta_2 \xi_1}{4 + \frac{9 \sin[3 \lambda_1 - \lambda_2] a_1 \operatorname{CO}_1 \gamma_1 \eta_2 \xi_1}{4 + \frac{9 \sin[3 \lambda_1 - \lambda_2] a_1 \operatorname{CO}_1 \gamma_1 \eta_2 \xi_1}{4 + \frac{9 \sin[3 \lambda_1 - \lambda_2] a_1 \operatorname{CO}_1 \gamma_1 \eta_2 \xi_1}{4 + \frac{9 \sin[3 \lambda_1 - \lambda_2] a_1 \operatorname{CO}_1 \gamma_1 \eta_2 \xi_1}{4 + \frac{9 \sin[3 \lambda_1 - \lambda_2] \alpha_1 \tau_1 \eta_2 \xi_1}{4 + \frac{9 \sin[3 \lambda_1 - \lambda_2] \alpha_1 \tau_1 \eta_2 \xi_1}{4 + \frac{9 \sin[3 \lambda_1 - \lambda_2] \alpha_1 \tau_1 \eta_2 \tau_1 \eta_2 \xi_1}{4 + \frac{9 \sin[3 \lambda_1 - \lambda_2] \alpha_1 \tau_1 \eta_2 \tau_1 \eta_2 \xi_1}{4 $
$8 a_2 \gamma_2 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$ $8 a_2 \gamma_2 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$
$\frac{3\sin[\lambda_1+\lambda_2]a_1CO_1\gamma_1\eta_2\xi_1}{2} - \frac{3\sin[2\lambda_1]a_1CO_2\gamma_1\eta_2\xi_1}{2} +$
$4 a_2 \gamma_2 \sqrt{\Lambda_1} \sqrt{\Lambda_2} \qquad 8 a_2 \gamma_2 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$
$\frac{3\sin[2\lambda_1 - 4\lambda_2] a_1 c_0 \gamma_1 \eta_2 \xi_1}{4} + \frac{3\sin[4\lambda_1 - 4\lambda_2] a_1 c_0 \gamma_1 \eta_2 \xi_1}{4} + \frac{3\sin[4\lambda_1 - 4\lambda_2] a_1 c_0 \gamma_1 \eta_2 \xi_1}{4} + \frac{3\sin[4\lambda_1 - 4\lambda_2] a_1 c_0 \gamma_1 \eta_2 \xi_1}{4} + \frac{3\sin[4\lambda_1 - 4\lambda_2] a_1 c_0 \gamma_1 \eta_2 \xi_1}{4} + \frac{3\sin[4\lambda_1 - 4\lambda_2] a_1 c_0 \gamma_1 \eta_2 \xi_1}{4} + \frac{3\sin[4\lambda_1 - 4\lambda_2] a_1 c_0 \gamma_1 \eta_2 \xi_1}{4} + \frac{3\sin[4\lambda_1 - 4\lambda_2] a_1 c_0 \gamma_1 \eta_2 \xi_1}{4} + \frac{3\sin[4\lambda_1 - 4\lambda_2] a_1 c_0 \gamma_1 \eta_2 \xi_1}{4} + \frac{3\sin[4\lambda_1 - 4\lambda_2] a_1 c_0 \gamma_1 \eta_2 \xi_1}{4} + \frac{3\sin[4\lambda_1 - 4\lambda_2] a_1 c_0 \gamma_1 \eta_2 \xi_1}{4} + \frac{3\sin[4\lambda_1 - 4\lambda_2] a_1 c_0 \gamma_1 \eta_2 \xi_1}{4} + \frac{3\sin[4\lambda_1 - 4\lambda_2] a_1 c_0 \gamma_1 \eta_2 \xi_1}{4} + \frac{3\sin[4\lambda_1 - 4\lambda_2] a_1 c_0 \gamma_1 \eta_2 \xi_1}{4} + \frac{3\sin[4\lambda_1 - 4\lambda_2] a_1 c_0 \gamma_1 \eta_2 \xi_1}{4} + \frac{3\sin[4\lambda_1 - 4\lambda_2] a_1 c_0 \gamma_1 \eta_2 \xi_1}{4} + \frac{3\sin[4\lambda_1 - 4\lambda_2] a_1 c_0 \gamma_1 \eta_2 \xi_1}{4} + \frac{3\sin[4\lambda_1 - 4\lambda_2] a_1 c_0 \gamma_1 \eta_2 \xi_1}{4} + \frac{3\sin[4\lambda_1 - 4\lambda_2] a_1 c_0 \gamma_1 \eta_2 \xi_1}{4} + \frac{3\sin[4\lambda_1 - 4\lambda_2] a_1 c_0 \gamma_1 \eta_2 \xi_1}{4} + \frac{3\sin[4\lambda_1 - 4\lambda_2] a_1 c_0 \gamma_1 \eta_2 \xi_1}{4} + \frac{3\sin[4\lambda_1 - 4\lambda_2] a_1 c_0 \gamma_1 \eta_2 \xi_1}{4} + \frac{3\sin[4\lambda_1 - 4\lambda_2] a_1 c_0 \gamma_1 \eta_2 \xi_1}{4} + \frac{3\sin[4\lambda_1 - 4\lambda_2] a_1 c_0 \gamma_1 \eta_2 \xi_1}{4} + \frac{3\sin[4\lambda_1 - 4\lambda_2] a_1 c_0 \gamma_1 \eta_2 \xi_1}{4} + \frac{3\sin[4\lambda_1 - 4\lambda_2] a_1 c_0 \gamma_1 \eta_2 \xi_1}{4} + \frac{3\sin[4\lambda_1 - 4\lambda_2] a_1 c_0 \gamma_1 \eta_2 \xi_1}{4} + \frac{3\sin[4\lambda_1 - 4\lambda_2] a_1 c_0 \gamma_1 \eta_2 \xi_1}{4} + \frac{3\sin[4\lambda_1 - 4\lambda_2] a_1 c_0 \gamma_1 \eta_2 \xi_1}{4} + \frac{3\sin[4\lambda_1 - 4\lambda_2] a_1 c_0 \gamma_1 \eta_2 \xi_1}{4} + \frac{3\sin[4\lambda_1 - 4\lambda_2] a_1 c_0 \gamma_1 \eta_2 \xi_1}{4} + \frac{3\sin[4\lambda_1 - 4\lambda_2] a_1 c_0 \gamma_1 \eta_2 \xi_1}{4} + \frac{3\sin[4\lambda_1 - 4\lambda_2] a_1 c_0 \gamma_1 \eta_2 \xi_1}{4} + \frac{3\sin[4\lambda_1 - 4\lambda_2] a_1 c_0 \gamma_1 \eta_2 \xi_1}{4} + \frac{3\sin[4\lambda_1 - 4\lambda_2] a_1 c_0 \gamma_1 \eta_2 \xi_1}{4} + \frac{3\sin[4\lambda_1 - 4\lambda_2] a_1 c_0 \gamma_1 \eta_2 \xi_1}{4} + \frac{3\sin[4\lambda_1 - 4\lambda_2] a_1 c_0 \gamma_1 \eta_2 \xi_1}{4} + \frac{3\sin[4\lambda_1 - 4\lambda_2] a_1 c_0 \gamma_1 \eta_2 \xi_1}{4} + \frac{3\sin[4\lambda_1 - 4\lambda_2] a_1 c_0 \gamma_1 \eta_2 \xi_1}{4} + \frac{3\sin[4\lambda_1 - 4\lambda_2] a_1 c_0 \gamma_1 \eta_2 \xi_1}{4} + \frac{3\sin[4\lambda_1 - 4\lambda_2] a_1 c_0 \gamma_1 \eta_2 \xi_1}{4} + \frac{3\sin[4\lambda_1 - 4\lambda_2] a_1 c_0 \gamma_1 \eta_2 \xi_1}{4} + \frac{3\sin[4\lambda_1 - 4\lambda_2] a_1 c_0 \gamma_1 \eta_2 \xi_1}{4} + \frac{3\sin[4\lambda_1 - 4\lambda_2] a_1 c_0 \gamma_1 \eta_2 \xi_1}{4} + \frac{3\sin[4\lambda_1 - 4\lambda_2] a_1 c_0 \gamma_1 \eta_2 \xi_1}{4} + \frac{3\sin[4\lambda_1 - 4\lambda_2] a_1 c_0 \gamma_1 \eta_2 \xi_1}{4} + 3\sin[4\lambda_1 - 4\lambda_2] a_$
$8 a_2 \gamma_2 \sqrt{\Lambda_1} \sqrt{\Lambda_2} \qquad \qquad 8 a_2 \gamma_2 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$
$\frac{9 \sin[4 \lambda_1 - 2 \lambda_2] a_1 C_0 \gamma_1 \eta_2 \zeta_1}{2} + \frac{9 \sin[2 \lambda_2] a_1 C_0 \gamma_1 \eta_2 \zeta_1}{2} + 9 \sin[2 $
$8 a_2 \gamma_2 \sqrt{\Lambda_1} \sqrt{\Lambda_2} \qquad \qquad 8 a_2 \gamma_2 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$
$\frac{3 \sin[3 \lambda_1 - 5 \lambda_2] a_1 C 0_3 \gamma_1 \eta_2 \xi_1}{2} + \frac{3 \sin[5 \lambda_1 - 5 \lambda_2] a_1 C 0_3 \gamma_1 \eta_2 \xi_1}{2} -$
$8 a_2 \gamma_2 \sqrt{\Lambda_1} \sqrt{\Lambda_2} \qquad 8 a_2 \gamma_2 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$
$\frac{9 \sin[\lambda_1 - 3 \lambda_2] a_1 \cos \gamma_1 \eta_2 \xi_1}{2} + \frac{9 \sin[5 \lambda_1 - 3 \lambda_2] a_1 \cos \gamma_1 \eta_2 \xi_1}{2} -$
$8 a_2 \gamma_2 \sqrt{\Lambda_1} \sqrt{\Lambda_2} \qquad \qquad 8 a_2 \gamma_2 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$
$\frac{3 \operatorname{Sin}[\lambda_1 - \lambda_2] \operatorname{a_1} \operatorname{CO}_3 \gamma_1 \eta_2 \xi_1}{2} = \frac{3 \operatorname{Sin}[3 \lambda_1 - \lambda_2] \operatorname{a_1} \operatorname{CO}_3 \gamma_1 \eta_2 \xi_1}{2} = \frac{3 \operatorname{Sin}[3 \lambda_1 - \lambda_2] \operatorname{a_1} \operatorname{CO}_3 \gamma_1 \eta_2 \xi_1}{2} = \frac{3 \operatorname{Sin}[3 \lambda_1 - \lambda_2] \operatorname{a_1} \operatorname{CO}_3 \gamma_1 \eta_2 \xi_1}{2} = \frac{3 \operatorname{Sin}[3 \lambda_1 - \lambda_2] \operatorname{a_1} \operatorname{CO}_3 \gamma_1 \eta_2 \xi_1}{2} = \frac{3 \operatorname{Sin}[3 \lambda_1 - \lambda_2] \operatorname{a_1} \operatorname{CO}_3 \gamma_1 \eta_2 \xi_1}{2} = \frac{3 \operatorname{Sin}[3 \lambda_1 - \lambda_2] \operatorname{a_1} \operatorname{CO}_3 \gamma_1 \eta_2 \xi_1}{2} = \frac{3 \operatorname{Sin}[3 \lambda_1 - \lambda_2] S$
$8 a_2 \gamma_2 \sqrt{\Lambda_1} \sqrt{\Lambda_2} \qquad 8 a_2 \gamma_2 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$
$\frac{3 \sin[2 \lambda_1] a_2 \cos \gamma_2 \gamma_2 \zeta_1}{2} + \frac{3 \sin[2 \lambda_1 - 2 \lambda_2] a_2 \cos \gamma_2 \gamma_2 \zeta_1}{2} + \frac{9 \sin[2 \lambda_2] a_2 \cos \gamma_2 \gamma_2 \zeta_1}{2} - \frac{9 \sin[2 \lambda_2] a_2 \cos \gamma_2 \gamma_2 \zeta_1}{2} - \frac{1}{2}$
$8 a_1 \gamma_1 \sqrt{\Lambda_1} \sqrt{\Lambda_2} \qquad 8 a_1 \gamma_1 \sqrt{\Lambda_1} \sqrt{\Lambda_2} \qquad 8 a_1 \gamma_1 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$
$\frac{9 \sin[\lambda_1 - 3 \lambda_2] a_2 \operatorname{CO}_1 \gamma_2 \eta_2 \varsigma_1}{\sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} 2$
$8 a_1 \gamma_1 \sqrt{\Lambda_1} \sqrt{\Lambda_2} \qquad 8 a_1 \gamma_1 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$
$3 \sin[\lambda_1 - \lambda_2] a_2 \cos[\lambda_2 - \lambda_2] a_2 \cos[\lambda_1 - \lambda_2] a_2 $
$8 a_1 \gamma_1 \sqrt{\Lambda_1} \sqrt{\Lambda_2} \qquad 8 a_1 \gamma_1 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$
$\frac{3 \sin[\lambda_1 + \lambda_2] a_2 \cos[\lambda_2 + \lambda_2] a_2}{\sin[2 - \lambda_1] a_2 \cos[\lambda_2 + \lambda_2] a_2} + \frac{3 \sin[2 - \lambda_1] a_2 \cos[\lambda_2 + \lambda_2] a_2}{\sin[2 - \lambda_1] a_2 \cos[\lambda_2 + \lambda_2] a_2} - \frac{3 \sin[\lambda_1 + \lambda_2] a_2 \cos[\lambda_2 + \lambda_2] a_2}{\sin[2 - \lambda_1] a_2 \cos[\lambda_2 + \lambda_2] a_2} - \frac{3 \sin[\lambda_1 + \lambda_2] a_2 \cos[\lambda_2 + \lambda_2] a_2}{\sin[2 - \lambda_1] a_2 \cos[\lambda_2 + \lambda_2] a_2} - \frac{3 \sin[\lambda_1 + \lambda_2] a_2 \cos[\lambda_2 + \lambda_2] a_2}{\sin[2 - \lambda_1] a_2 \cos[\lambda_2 + \lambda_2] a_2} - \frac{3 \sin[\lambda_1 + \lambda_2] a_2}{\sin[\lambda_1 + \lambda_2] a_2 \cos[\lambda_2 + \lambda_2] a_2} - \frac{3 \sin[\lambda_1 + \lambda_2] a_2}{\sin[\lambda_1 + \lambda_2] a_2 \cos[\lambda_1 + \lambda_2] a_2} - \frac{3 \sin[\lambda_1 + \lambda_2] a_2}{\sin[\lambda_1 + \lambda_2] a_2} - \frac{3 \sin[\lambda_1 + \lambda_2] a_2}{\sin[\lambda_1 + \lambda_2] a_2} - \frac{3 \sin[\lambda_1 + \lambda_2] a_2}{\sin[\lambda_1 + \lambda_2] a_2} - \frac{3 \sin[\lambda_1 + \lambda_2] a_2}{\sin[\lambda_1 + \lambda_2] a_2} - \frac{3 \sin[\lambda_1 + \lambda_2] a_2}{\sin[\lambda_1 + \lambda_2] a_2} - \frac{3 \sin[\lambda_1 + \lambda_2] a_2}{\sin[\lambda_1 + \lambda_2] a_2} - \frac{3 \sin[\lambda_1 + \lambda_2] a_2}{\sin[\lambda_1 + \lambda_2] a_2} - \frac{3 \sin[\lambda_1 + \lambda_2] a_2}{\sin[\lambda_1 + \lambda_2] a_2} - \frac{3 \sin[\lambda_1 + \lambda_2] a_2}{\sin[\lambda_1 + \lambda_2] a_2} - \frac{3 \sin[\lambda_1 + \lambda_2] a_2}{\sin[\lambda_1 + \lambda_2] a_2} - \frac{3 \sin[\lambda_1 + \lambda_2] a_2}{\sin[\lambda_1 + \lambda_2] a_2} - \frac{3 \sin[\lambda_1 + \lambda_2] a_2}{\sin[\lambda_1 + \lambda_2] a_2} - \frac{3 \sin[\lambda_1 + \lambda_2] a_2}{\sin[\lambda_1 + \lambda_2] a_2} - \frac{3 \sin[\lambda_1 + \lambda_2] a_2}{\sin[\lambda_1 + \lambda_2] a_2} - \frac{3 \sin[\lambda_1 + \lambda_2] a_2}{\sin[\lambda_1 + \lambda_2] a_2} - \frac{3 \sin[\lambda_1 + \lambda_2] a_2}{\sin[\lambda_1 + \lambda_2] a_2} - \frac{3 \sin[\lambda_1 + \lambda_2] a_2}{\sin[\lambda_1 + \lambda_2] a_2} - \frac{3 \sin[\lambda_1 + \lambda_2] a_2}{\sin[\lambda_1 + \lambda_2] a_2} - \frac{3 \sin[\lambda_1 + \lambda_2] a_2}{\sin[\lambda_1 + \lambda_2] a_2} - \frac{3 \sin[\lambda_1 + \lambda_2] a_2}{\sin[\lambda_1 + \lambda_2] a_2} - \frac{3 \sin[\lambda_1 + \lambda_2] a_2}{\sin[\lambda_1 + \lambda_2] a_2} - \frac{3 \sin[\lambda_1 + \lambda_2] a_2}{\sin[\lambda_1 + \lambda_2] a_2} - \frac{3 \sin[\lambda_1 + \lambda_2] a_2}{\sin[\lambda_1 + \lambda_2] a_2} - \frac{3 \sin[\lambda_1 + \lambda_2] a_2}{\sin[\lambda_1 + \lambda_2] a_2} - \frac{3 \sin[\lambda_1 + \lambda_2] a_2}{\sin[\lambda_1 + \lambda_2] a_2} - \frac{3 \sin[\lambda_1 + \lambda_2] a_2}{\sin[\lambda_1 + \lambda_2] a_2} - \frac{3 \sin[\lambda_1 + \lambda_2] a_2}{\sin[\lambda_1 + \lambda_2] a_2} - \frac{3 \sin[\lambda_1 + \lambda_2] a_2}{\sin[\lambda_1 + \lambda_2] a_2} - \frac{3 \sin[\lambda_1 + \lambda_2] a_2}{\sin[\lambda_1 + \lambda_2] a_2} - \frac{3 \sin[\lambda_1 + \lambda_2] a_2}{\sin[\lambda_1 + \lambda_2] a_2} - \frac{3 \sin[\lambda_1 + \lambda_2] a_2}{\sin[\lambda_1 + \lambda_2] a_2} - \frac{3 \sin[\lambda_1 + \lambda_2] a_2}{\sin[\lambda_1 + \lambda_2] a_2} - \frac{3 \sin[\lambda_1 + \lambda_2] a_2}{\sin[\lambda_1 + \lambda_2] a_2} - \frac{3 \sin[\lambda_1 + \lambda_2] a_2}{\sin[\lambda_1 + \lambda_2] a_2} - \frac{3 \sin[\lambda_1 + \lambda_2] a_2}{\sin[\lambda_1 + \lambda_2] a_2} - \frac{3 \sin[\lambda_1 + \lambda_2] a_2}{\sin[\lambda_1 + \lambda_2] a_2} - \frac{3 \sin[\lambda_1 + \lambda_2] a_2} - \frac{3 \sin[\lambda_1 + \lambda_2] a_2} $
$4 a_1 \gamma_1 \sqrt{\Lambda_1} \sqrt{\Lambda_2} \qquad 8 a_1 \gamma_1 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$
$\frac{5 5 1 1 (2 \times 1 - 1 \times 2) (a_2 \otimes 0_2 \times 2 \times 1/2 \otimes 1)}{2 (a_1 \times 1 - 1 \times 2) (a_2 \otimes 0_2 \times 2 \times 1/2 \otimes 1)} = -$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\mathfrak{Sa}_1 \mathfrak{Y}_1 \mathfrak{V} \Lambda_1 \mathfrak{V} \Lambda_2 \qquad \mathfrak{Sa}_1 \mathfrak{Y}_1 \mathfrak{V} \Lambda_1 \mathfrak{V} \Lambda_2$

$\frac{9 \sin[3 \lambda_1 - 5 \lambda_2] a_2 CO_3 \gamma_2 \eta_2 \xi_1}{4} + \frac{3 \sin[5 \lambda_1 - 5 \lambda_2] a_2 CO_3 \gamma_2 \eta_2 \xi_1}{4} +$
$8 a_1 \gamma_1 \sqrt{\Lambda_1} \sqrt{\Lambda_2} \qquad \qquad 8 a_1 \gamma_1 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$
$\frac{3\sin[\lambda_1 - 3\lambda_2] a_2 CO_3 \gamma_2 \eta_2 \xi_1}{3\sin[5\lambda_1 - 3\lambda_2] a_2 CO_3 \gamma_2 \eta_2 \xi_1} - \frac{3\sin[5\lambda_1 - 3\lambda_2] a_2 CO_3 \gamma_2 \eta_2 \xi_1}{3\sin[5\lambda_1 - 3\lambda_2] a_2 CO_3 \gamma_2 \eta_2 \xi_1} - \frac{3\sin[5\lambda_1 - 3\lambda_2] a_2 CO_3 \gamma_2 \eta_2 \xi_1}{3\sin[5\lambda_1 - 3\lambda_2] a_2 CO_3 \gamma_2 \eta_2 \xi_1} - \frac{3\sin[5\lambda_1 - 3\lambda_2] a_2 CO_3 \gamma_2 \eta_2 \xi_1}{3\sin[5\lambda_1 - 3\lambda_2] a_2 CO_3 \gamma_2 \eta_2 \xi_1} - \frac{3\sin[5\lambda_1 - 3\lambda_2] a_2 CO_3 \gamma_2 \eta_2 \xi_1}{3\sin[5\lambda_1 - 3\lambda_2] a_2 CO_3 \gamma_2 \eta_2 \xi_1} - \frac{3\sin[5\lambda_1 - 3\lambda_2] a_2 CO_3 \gamma_2 \eta_2 \xi_1}{3\sin[5\lambda_1 - 3\lambda_2] a_2 CO_3 \gamma_2 \eta_2 \xi_1} - \frac{3\sin[5\lambda_1 - 3\lambda_2] a_2 CO_3 \gamma_2 \eta_2 \xi_1}{3\sin[5\lambda_1 - 3\lambda_2] a_2 CO_3 \gamma_2 \eta_2 \xi_1} - \frac{3\sin[5\lambda_1 - 3\lambda_2] a_2 CO_3 \gamma_2 \eta_2 \xi_1}{3\sin[5\lambda_1 - 3\lambda_2] a_2 CO_3 \gamma_2 \eta_2 \xi_1} - \frac{3\sin[5\lambda_1 - 3\lambda_2] a_2 CO_3 \gamma_2 \eta_2 \xi_1}{3\sin[5\lambda_1 - 3\lambda_2] a_2 CO_3 \gamma_2 \eta_2 \xi_1} - \frac{3\sin[5\lambda_1 - 3\lambda_2] a_2 CO_3 \gamma_2 \eta_2 \xi_1}{3\sin[5\lambda_1 - 3\lambda_2] a_2 CO_3 \gamma_2 \eta_2 \xi_1} - \frac{3\sin[5\lambda_1 - 3\lambda_2] a_2 CO_3 \gamma_2 \eta_2 \xi_1}{3\sin[5\lambda_1 - 3\lambda_2] a_2 CO_3 \gamma_2 \eta_2 \xi_1} - \frac{3\sin[5\lambda_1 - 3\lambda_2] a_2 CO_3 \gamma_2 \eta_2 \xi_1}{3\sin[5\lambda_1 - 3\lambda_2] a_2 CO_3 \gamma_2 \eta_2 \xi_1} - \frac{3\sin[5\lambda_1 - 3\lambda_2] a_2 CO_3 \gamma_2 \eta_2 \xi_1}{3\sin[5\lambda_1 - 3\lambda_2] a_2 CO_3 \gamma_2 \eta_2 \xi_1} - \frac{3\sin[5\lambda_1 - 3\lambda_2] a_2 CO_3 \gamma_2 \eta_2 \xi_1}{3\sin[5\lambda_1 - 3\lambda_2] a_2 CO_3 \gamma_2 \eta_2 \xi_1} - \frac{3\sin[5\lambda_1 - 3\lambda_2] a_2 CO_3 \gamma_2 \eta_2 \xi_1}{3\sin[5\lambda_1 - 3\lambda_2] a_2 CO_3 \gamma_2 \eta_2 \xi_1} - \frac{3\sin[5\lambda_1 - 3\lambda_2] a_2 CO_3 \gamma_2 \eta_2 \xi_1}{3\sin[5\lambda_1 - 3\lambda_2] a_2 CO_3 \gamma_2 \eta_2 \xi_1} - \frac{3\sin[5\lambda_1 - 3\lambda_2] a_2 CO_3 \gamma_2 \eta_2 \xi_1}{3\sin[5\lambda_1 - 3\lambda_2] a_2 CO_3 \gamma_2 \eta_2 \xi_1} - \frac{3\sin[5\lambda_1 - 3\lambda_2] a_2 CO_3 \gamma_2 \eta_2 \xi_1}{3\sin[5\lambda_1 - 3\lambda_2] a_2 CO_3 \gamma_2 \eta_2 \xi_1} - \frac{3\sin[5\lambda_1 - 3\lambda_2] a_2 CO_3 \gamma_2 \eta_2 \xi_1}{3\sin[5\lambda_1 - 3\lambda_2] a_2 CO_3 \gamma_2 \eta_2 \xi_1} - \frac{3\sin[5\lambda_1 - 3\lambda_2] a_2 CO_3 \gamma_2 \eta_2 \xi_1}{3\sin[5\lambda_1 - 3\lambda_2] a_2 CO_3 \gamma_2 \eta_2 \xi_1} - \frac{3\sin[5\lambda_1 - 3\lambda_2] a_2 CO_3 \gamma_2 \eta_2 \xi_1}{3\sin[5\lambda_1 - 3\lambda_2] a_2 CO_3 \gamma_2 \eta_2 \xi_1} - \frac{3\sin[5\lambda_1 - 3\lambda_2] a_2 CO_3 \gamma_2 \eta_2 \xi_1}{3\sin[5\lambda_1 - 3\lambda_2] a_2 CO_3 \gamma_2 \eta_2 \xi_1} - \frac{3\sin[5\lambda_1 - 3\lambda_2] a_2 CO_3 \gamma_2 \eta_2 \xi_1} - \frac{3\sin[5\lambda_1 - 3\lambda_2] a_2 CO_3 \eta_2 \xi_1} - \frac{3\sin[5\lambda_1 - 3\lambda_2] a_2 CO_3 \eta_2} - \frac$
$8 a_1 \gamma_1 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$ $8 a_1 \gamma_1 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$
$\frac{3\sin[\lambda_{1}-\lambda_{2}]a_{2}CO_{3}\gamma_{2}\eta_{2}\xi_{1}}{4} + \frac{9\sin[3\lambda_{1}-\lambda_{2}]a_{2}CO_{3}\gamma_{2}\eta_{2}\xi_{1}}{6} - \frac{\cos[\lambda_{1}-\lambda_{2}]BO_{0}\xi_{1}^{2}}{6} + \cos[\lambda$
$8 a_1 \gamma_1 \sqrt{\Lambda_1} \sqrt{\Lambda_2} \qquad \qquad 8 a_1 \gamma_1 \sqrt{\Lambda_1} \sqrt{\Lambda_2} \qquad \qquad 4 \Lambda_1$
$3 \cos[3 \lambda_1 - \lambda_2] B0_0 \xi_1^2 + \cos[\lambda_1 + \lambda_2] B0_0 \xi_1^2 + \cos[\lambda_1 - \lambda_2]^2 B0_1 \xi_1^2$
16 Λ ₁ + 16 Λ ₁ - 2 Λ ₁ +
$\frac{3 \cos \left[\lambda_1 - \lambda_2\right] \cos \left[3 \lambda_1 - \lambda_2\right] B 0_1 \xi_1^2}{2 \cos \left[\lambda_1 - \lambda_2\right] \cos \left[\lambda_1 - \lambda_2\right] B 0_1 \xi_1^2}$
8 Λ ₁ 8 Λ ₁
$\frac{\cos\left[\lambda_{1}-\lambda_{2}\right]\cos\left[2\left(\lambda_{1}-\lambda_{2}\right)\right]\operatorname{BO}_{2}\xi_{1}^{2}}{4} + \frac{3\cos\left[2\left(\lambda_{1}-\lambda_{2}\right)\right]\cos\left[3\lambda_{1}-\lambda_{2}\right]\operatorname{BO}_{2}\xi_{1}^{2}}{4}$
2 Λ ₁ 8 Λ ₁
$\frac{\cos\left[2\left(\lambda_{1}-\lambda_{2}\right)\right]\cos\left[\lambda_{1}+\lambda_{2}\right]\operatorname{BO}_{2}\xi_{1}^{2}}{\cos\left[\lambda_{1}-\lambda_{2}\right]\cos\left[3\left(\lambda_{1}-\lambda_{2}\right)\right]\operatorname{BO}_{3}\xi_{1}^{2}}+$
8 Λ ₁ 2 Λ ₁
$\frac{3 \cos \left[3 \left(\lambda_1 - \lambda_2\right)\right] \cos \left[3 \lambda_1 - \lambda_2\right] B 0_3 \xi_1^2}{+} + \frac{\cos \left[3 \left(\lambda_1 - \lambda_2\right)\right] \cos \left[\lambda_1 + \lambda_2\right] B 0_3 \xi_1^2}{+} + \frac{\cos \left[3 \left(\lambda_1 - \lambda_2\right)\right] \cos \left[\lambda_1 + \lambda_2\right] B 0_3 \xi_1^2}{+} + \frac{\cos \left[3 \left(\lambda_1 - \lambda_2\right)\right] \cos \left[\lambda_1 + \lambda_2\right] B 0_3 \xi_1^2}{+} + \frac{\cos \left[3 \left(\lambda_1 - \lambda_2\right)\right] \cos \left[\lambda_1 + \lambda_2\right] B 0_3 \xi_1^2}{+} + \frac{\cos \left[3 \left(\lambda_1 - \lambda_2\right)\right] \cos \left[\lambda_1 + \lambda_2\right] B 0_3 \xi_1^2}{+} + \frac{\cos \left[3 \left(\lambda_1 - \lambda_2\right)\right] \cos \left[\lambda_1 + \lambda_2\right] B 0_3 \xi_1^2}{+} + \frac{\cos \left[3 \left(\lambda_1 - \lambda_2\right)\right] \cos \left[\lambda_1 + \lambda_2\right] B 0_3 \xi_1^2}{+} + \frac{\cos \left[3 \left(\lambda_1 - \lambda_2\right)\right] \cos \left[\lambda_1 + \lambda_2\right] B 0_3 \xi_1^2}{+} + \frac{\cos \left[3 \left(\lambda_1 - \lambda_2\right)\right] \cos \left[\lambda_1 + \lambda_2\right] B 0_3 \xi_1^2}{+} + \frac{\cos \left[3 \left(\lambda_1 - \lambda_2\right)\right] \cos \left[\lambda_1 + \lambda_2\right] B 0_3 \xi_1^2}{+} + \frac{\cos \left[3 \left(\lambda_1 - \lambda_2\right)\right] \cos \left[\lambda_1 + \lambda_2\right] B 0_3 \xi_1^2}{+} + \frac{\cos \left[3 \left(\lambda_1 - \lambda_2\right)\right] \cos \left[\lambda_1 + \lambda_2\right] B 0_3 \xi_1^2}{+} + \frac{\cos \left[3 \left(\lambda_1 - \lambda_2\right)\right] \cos \left[\lambda_1 + \lambda_2\right] B 0_3 \xi_1^2}{+} + \frac{\cos \left[3 \left(\lambda_1 - \lambda_2\right)\right] \cos \left[\lambda_1 + \lambda_2\right] B 0_3 \xi_1^2}{+} + \frac{\cos \left[3 \left(\lambda_1 - \lambda_2\right)\right] \cos \left[\lambda_1 + \lambda_2\right] B 0_3 \xi_1^2}{+} + \frac{\cos \left[3 \left(\lambda_1 - \lambda_2\right)\right] \cos \left[\lambda_1 + \lambda_2\right] B 0_3 \xi_1^2}{+} + \frac{\cos \left[3 \left(\lambda_1 - \lambda_2\right)\right] \cos \left[\lambda_1 + \lambda_2\right] B 0_3 \xi_1^2}{+} + \frac{\cos \left[3 \left(\lambda_1 - \lambda_2\right)\right] \cos \left[\lambda_1 + \lambda_2\right] B 0_3 \xi_1^2}{+} + \frac{\cos \left[3 \left(\lambda_1 - \lambda_2\right)\right] \cos \left[\lambda_1 + \lambda_2\right] B 0_3 \xi_1^2}{+} + \frac{\cos \left[3 \left(\lambda_1 - \lambda_2\right)\right] \cos \left[\lambda_1 + \lambda_2\right] B 0_3 \xi_1^2}{+} + \frac{\cos \left[3 \left(\lambda_1 - \lambda_2\right)\right] \cos \left[\lambda_1 + \lambda_2\right] B 0_3 \xi_1^2}{+} + \frac{\cos \left[3 \left(\lambda_1 - \lambda_2\right)\right] \cos \left[\lambda_1 + \lambda_2\right] B 0_3 \xi_1^2}{+} + \frac{\cos \left[3 \left(\lambda_1 - \lambda_2\right)\right] \cos \left[\lambda_1 + \lambda_2\right] B 0_3 \xi_1^2}{+} + \frac{\cos \left[3 \left(\lambda_1 - \lambda_2\right)\right] \cos \left[\lambda_1 + \lambda_2\right] B 0_3 \xi_1^2}{+} + \frac{\cos \left[3 \left(\lambda_1 - \lambda_2\right)\right] \cos \left[\lambda_1 + \lambda_2\right] B 0_3 \xi_1^2}{+} + \frac{\cos \left[3 \left(\lambda_1 - \lambda_2\right)\right] \cos \left[\lambda_1 + \lambda_2\right] B 0_3 \xi_1^2}{+} + \cos \left[3 \left(\lambda_1 - \lambda_2\right)\right] \cos \left[3 \left(\lambda_$
8 Λ ₁ 8 Λ ₁
$\frac{15 \text{ CO}_0 \xi_1^2}{9 \text{ Cos}[2 \lambda_1] \text{ CO}_0 \xi_1^2} = \frac{9 \text{ Cos}[2 \lambda_1 - 2 \lambda_2] \text{ CO}_0 \xi_1^2}{9 \text{ Cos}[2 \lambda_1 - 2 \lambda_2] \text{ CO}_0 \xi_1^2} + \frac{3 \text{ Cos}[4 \lambda_1 - 2 \lambda_2] \text{ CO}_0 \xi_1^2}{1 \text{ CO}_0 \xi_1^2} + \frac{3 \text{ Cos}[4 \lambda_1 - 2 \lambda_2] \text{ CO}_0 \xi_1^2}{1 \text{ CO}_0 \xi_1^2} + \frac{3 \text{ Cos}[4 \lambda_1 - 2 \lambda_2] \text{ CO}_0 \xi_1^2}{1 \text{ CO}_0 \xi_1^2} + \frac{3 \text{ Cos}[4 \lambda_1 - 2 \lambda_2] \text{ CO}_0 \xi_1^2}{1 \text{ CO}_0 \xi_1^2} + \frac{3 \text{ Cos}[4 \lambda_1 - 2 \lambda_2] \text{ CO}_0 \xi_1^2}{1 \text{ CO}_0 \xi_1^2} + \frac{3 \text{ Cos}[4 \lambda_1 - 2 \lambda_2] \text{ CO}_0 \xi_1^2}{1 \text{ CO}_0 \xi_1^2} + \frac{3 \text{ Cos}[4 \lambda_1 - 2 \lambda_2] \text{ CO}_0 \xi_1^2}{1 \text{ CO}_0 \xi_1^2} + \frac{3 \text{ Cos}[4 \lambda_1 - 2 \lambda_2] \text{ CO}_0 \xi_1^2}{1 \text{ CO}_0 \xi_1^2} + \frac{3 \text{ Cos}[4 \lambda_1 - 2 \lambda_2] \text{ CO}_0 \xi_1^2}{1 \text{ CO}_0 \xi_1^2} + \frac{3 \text{ Cos}[4 \lambda_1 - 2 \lambda_2] \text{ CO}_0 \xi_1^2}{1 \text{ CO}_0 \xi_1^2} + \frac{3 \text{ Cos}[4 \lambda_1 - 2 \lambda_2] \text{ CO}_0 \xi_1^2}{1 \text{ CO}_0 \xi_1^2} + \frac{3 \text{ Cos}[4 \lambda_1 - 2 \lambda_2] \text{ CO}_0 \xi_1^2}{1 \text{ CO}_0 \xi_1^2} + \frac{3 \text{ Cos}[4 \lambda_1 - 2 \lambda_2] \text{ CO}_0 \xi_1^2}{1 \text{ CO}_0 \xi_1^2} + \frac{3 \text{ Cos}[4 \lambda_1 - 2 \lambda_2] \text{ CO}_0 \xi_1^2}{1 \text{ CO}_0 \xi_1^2} + \frac{3 \text{ Cos}[4 \lambda_1 - 2 \lambda_2] \text{ CO}_0 \xi_1^2}{1 \text{ CO}_0 \xi_1^2} + \frac{3 \text{ Cos}[4 \lambda_1 - 2 \lambda_2] \text{ CO}_0 \xi_1^2}{1 \text{ CO}_0 \xi_1^2} + \frac{3 \text{ Cos}[4 \lambda_1 - 2 \lambda_2] \text{ CO}_0 \xi_1^2}{1 \text{ CO}_0 \xi_1^2} + \frac{3 \text{ Cos}[4 \lambda_1 - 2 \lambda_2] \text{ CO}_0 \xi_1^2}{1 \text{ CO}_0 \xi_1^2} + \frac{3 \text{ Cos}[4 \lambda_1 - 2 \lambda_2] \text{ CO}_0 \xi_1^2}{1 \text{ CO}_0 \xi_1^2} + \frac{3 \text{ Cos}[4 \lambda_1 - 2 \lambda_2] \text{ CO}_0 \xi_1^2}{1 \text{ CO}_0 \xi_1^2} + \frac{3 \text{ Cos}[4 \lambda_1 - 2 \lambda_2] \text{ CO}_0 \xi_1^2}{1 \text{ CO}_0 \xi_1^2} + \frac{3 \text{ Cos}[4 \lambda_1 - 2 \lambda_2] \text{ CO}_0 \xi_1^2}{1 \text{ CO}_0 \xi_1^2} + \frac{3 \text{ Cos}[4 \lambda_1 - 2 \lambda_2] \text{ CO}_0 \xi_1^2}{1 \text{ CO}_0 \xi_1^2} + \frac{3 \text{ Cos}[4 \lambda_1 - 2 \lambda_2] \text{ CO}_0 \xi_1^2}{1 \text{ CO}_0 \xi_1^2} + \frac{3 \text{ Cos}[4 \lambda_1 - 2 \lambda_2] \text{ CO}_0 \xi_1^2}{1 \text{ CO}_0 \xi_1^2} + \frac{3 \text{ Cos}[4 \lambda_1 - 2 \lambda_2] \text{ CO}_0 \xi_1^2}{1 \text{ CO}_0 \xi_1^2} + \frac{3 \text{ Cos}[4 \lambda_1 - 2 \lambda_2] \text{ CO}_0 \xi_1^2}{1 \text{ CO}_0 \xi_1^2} + \frac{3 \text{ Cos}[4 \lambda_1 - 2 \lambda_2] \text{ CO}_0 \xi_1^2}{1 \text{ CO}_0 \xi_1^2} + \frac{3 \text{ Cos}[4 \lambda_1 - 2 \lambda_2] \text{ CO}_0 \xi_1^2}{1 \text{ CO}_0 \xi_1^2} + \frac{3 \text{ Cos}[4 \lambda_1 - 2 \lambda_2] \text{ CO}_0 \xi_1^2}{1 \text{ CO}_0 \xi_1^2} + \frac{3 \text{ Cos}[$
16 Λ ₁ 16 Λ ₁ 16 Λ ₁ 32 Λ ₁
$\frac{27\cos[2\lambda_2]\cos\xi_1^2}{27\cos[\lambda_1 - 3\lambda_2]\cos\xi_1^2} - \frac{9\cos[3\lambda_1 - 3\lambda_2]\cos\xi_1^2}{27\cos[3\lambda_1 - 3\lambda_2]\cos\xi_1^2} + \frac{1}{2}$
32 Λ ₁ 32 Λ ₁ 16 Λ ₁
$\frac{3 \cos [5 \lambda_1 - 3 \lambda_2] \cos [\xi_1^2}{4} + \frac{21 \cos [\lambda_1 - \lambda_2] \cos [\xi_1^2]}{4} - \frac{15 \cos [3 \lambda_1 - \lambda_2] \cos [\xi_1^2]}{4} + \frac{15 \cos [3 \lambda_1 - \lambda_2] \cos [\xi_1^2]}{4} + \frac{15 \cos [\xi_1^2 - \xi_1^2] \cos [\xi_1^2] \cos [\xi_1^2]}{4} + \frac{15 \cos [\xi_1^2 - \xi_1^2] \cos [\xi_1^2]}{4} + \frac{15 \cos [\xi_1^2 - \xi_1^2] \cos [\xi_1^2]}{4} + \frac{15 \cos [\xi_1^2 - \xi_1^2] \cos [\xi_1^2] \cos [\xi_1^2]}{4} + \frac{15 \cos [\xi_1^2 - \xi_1^2] \cos [\xi_1^2] \cos [\xi_1^2]}{4} + \frac{15 \cos [\xi_1^2 - \xi_1^2] \cos [\xi_1^2] \cos [\xi_1^2]}{4} + \frac{15 \cos [\xi_1^2 - \xi_1^2] \cos [\xi_1^2] \cos [\xi_1^2]}{4} + \frac{15 \cos [\xi_1^2 - \xi_1^2] \cos [\xi_1^2] \cos [\xi_1^2]}{4} + \frac{15 \cos [\xi_1^2 - \xi_1^2] \cos [\xi_1^2]}{4} + \frac{15 \cos [\xi_1^2 - \xi_1^2] \cos [\xi_1^2]}{4} + \frac{15 \cos [\xi_1^2 - \xi_1^2] \cos [\xi_1^2] \cos [\xi_1^2]}{4} + \frac{15 \cos [\xi_1^2 - \xi_1^2] \cos [\xi_1^2] \cos [\xi_1^2]}{4} + \frac{15 \cos [\xi_1^2 - \xi_1^2] \cos [\xi_1^2]}{4} + \frac{15 \cos [\xi_1^2 - \xi_1^2] \cos [\xi_1^2] \cos [\xi_1^2] \cos [\xi_1^2]}{4} + \frac{15 \cos [\xi_1^2 - \xi_1^2] \cos [\xi_1^2] \cos [\xi_1^2]}{4} + 15 \cos [\xi_1^2 - \xi_1^2] \cos [\xi_1^2] \cos [\xi_1^2] \cos [\xi_1^2] \cos [\xi_1^2] \cos [\xi_1^2]$
$32 \Lambda_1$ $16 \Lambda_1$ $32 \Lambda_1$
$\frac{9\cos[\lambda_1 + \lambda_2]\cos[\xi_1^2]}{2} - \frac{9\cos[\xi_1^2]}{2} + \frac{15\cos[\xi_1^2]}{2} + \frac{27\cos[\xi_1^2]}{27\cos[\xi_1^2]} + \frac{27\cos[\xi_1^2] - 4\lambda_2\cos[\xi_1^2]}{27\cos[\xi_1^2]} - \frac{15\cos[\xi_1^2]}{2} + 15\cos[$
$32 \Lambda_1$ 16 Λ_1 16 Λ_1 32 Λ_1
$\frac{9\cos[4\lambda_1 - 4\lambda_2]\cos_2\xi_1^2}{1 + \frac{3\cos[6\lambda_1 - 4\lambda_2]\cos_2\xi_1^2}{1 + \frac{15\cos[2\lambda_1 - 2\lambda_2]\cos_2\xi_1^2}{1 - \frac{1}{2}}} - \frac{15\cos[2\lambda_1 - 2\lambda_2]\cos_2\xi_1^2}{1 - \frac{1}{2}} - \frac{15\cos[2\lambda_1 - 2\lambda_2]\cos_2\xi_1^2}{1 - \frac{1}{2}} - \frac{1}{2}\cos[\frac{1}{2}\cos(2\lambda_1 - \frac{1}{2}\cos(2\lambda_1 - 1$
16 Λ ₁ 32 Λ ₁ 8 Λ ₁
$\frac{9 \cos [4 \lambda_1 - 2 \lambda_2] \cos [2 \xi_1^2]}{2} - \frac{9 \cos [2 \lambda_2] \cos [2 \xi_1^2]}{2} + \frac{27 \cos [3 \lambda_1 - 5 \lambda_2] \cos [\xi_1^2]}{2} - \frac{9 \cos [\xi_1^2] \cos [\xi_1^2]}{2} - \frac{9 \cos [\xi_1^2] \cos [\xi_1^2]}{2} + \frac{27 \cos [\xi_1^2] \cos [\xi_1^2] \cos [\xi_1^2] \cos [\xi_1^2]}{2} + 27 \cos [\xi_1^2] \cos [$
16 Λ ₁ 16 Λ ₁ 32 Λ ₁
$\frac{9\cos[5\lambda_1 - 5\lambda_2]\cos\xi_1^2}{4} + \frac{3\cos[7\lambda_1 - 5\lambda_2]\cos\xi_1^2}{4} - \frac{9\cos[\lambda_1 - 3\lambda_2]\cos\xi_1^2}{4} + \frac{3\cos[7\lambda_1 - 5\lambda_2]\cos\xi_1^2}{4} + \frac{3\cos[7\lambda_1 - 5\lambda_2]\cos\xi_1^2} + \frac{3\cos[7\lambda_1 - 5\lambda_2]\cos\xi_1^2}{4} + \frac{3\cos[7\lambda_1 - 5\lambda_2]\cos\xi_1^2} + \frac{3\cos[7\lambda_1 - 5\lambda_2]\cos\xi_1^2}{4} + \frac{3\cos[7\lambda_1 - 5\lambda_2]\cos\xi_1^2} + \frac{3\cos[7\lambda_1 - 5\lambda_2]\cos\xi_1^2} + \frac{3\cos[7\lambda_1 - 5\lambda_2]\cos\xi_1^2}{4} + \frac{3\cos[7\lambda_1 - 5\lambda_2]\cos\xi_1^2} + 3\cos[7\lambda_1 - 5\lambda_2]\cos\xi_$
16 Λ ₁ 32 Λ ₁ 16 Λ ₁
$\frac{15 \cos [3 \lambda_1 - 3 \lambda_2] \cos \xi_1}{2} - \frac{9 \cos [5 \lambda_1 - 3 \lambda_2] \cos \xi_1}{2} - \frac{9 \cos [\lambda_1 - \lambda_2] \cos \xi_1}{2} + \frac{9 \cos [\lambda_1 - \lambda_2] \cos \xi_1}{2} + \frac{15 \cos [\lambda_1 - \lambda_2] \cos \xi_1}{2} + 15 \cos [\lambda_1 - \lambda_2] \cos \xi_1$
$8 \Lambda_1$ $16 \Lambda_1$ $16 \Lambda_1$
$\frac{27 \cos [3 \lambda_1 - \lambda_2] \cos [\xi_1]}{1 + \lambda_2} + \frac{3 \cos [\lambda_1 + \lambda_2] \cos [\xi_1]}{1 + \lambda_2} + \frac{3 a_1^2 \cos [\chi_1] \xi_1}{1 + $
$32 \Lambda_1 \qquad \qquad 32 \Lambda_1 \qquad \qquad 8 a_2^2 \gamma_2^2 \Lambda_1$
$\frac{3 \cos [2 \lambda_1] a_1^2 \cos_0 \gamma_1^2 \xi_1^2}{2} + \frac{3 \cos [\lambda_1 - \lambda_2] a_1^2 \cos_1 \gamma_1^2 \xi_1^2}{2} + \frac{3 \cos [3 \lambda_1 - \lambda_2] a_1^2 \cos_1 \gamma_1^2 \xi_1^2}{2} + \frac{3 \cos [3 \lambda_1 - \lambda_2] a_1^2 \cos_1 \gamma_1^2 \xi_1^2}{2} + \frac{3 \cos [3 \lambda_1 - \lambda_2] a_1^2 \cos_1 \gamma_1^2 \xi_1^2}{2} + \frac{3 \cos [3 \lambda_1 - \lambda_2] a_1^2 \cos_1 \gamma_1^2 \xi_1^2}{2} + \frac{3 \cos [3 \lambda_1 - \lambda_2] a_1^2 \cos_1 \gamma_1^2 \xi_1^2}{2} + \frac{3 \cos [3 \lambda_1 - \lambda_2] a_1^2 \cos_1 \gamma_1^2 \xi_1^2}{2} + \frac{3 \cos [3 \lambda_1 - \lambda_2] a_1^2 \cos_1 \gamma_1^2 \xi_1^2}{2} + \frac{3 \cos [3 \lambda_1 - \lambda_2] a_1^2 \cos_1 \gamma_1^2 \xi_1^2}{2} + \frac{3 \cos [3 \lambda_1 - \lambda_2] a_1^2 \cos_1 \gamma_1^2 \xi_1^2}{2} + \frac{3 \cos [3 \lambda_1 - \lambda_2] a_1^2 \cos_1 \gamma_1^2 \xi_1^2}{2} + \frac{3 \cos [3 \lambda_1 - \lambda_2] a_1^2 \cos_1 \gamma_1^2 \xi_1^2}{2} + \frac{3 \cos [3 \lambda_1 - \lambda_2] a_1^2 \cos_1 \gamma_1^2 \xi_1^2}{2} + \frac{3 \cos [3 \lambda_1 - \lambda_2] a_1^2 \cos_1 \gamma_1^2 \xi_1^2}{2} + \frac{3 \cos [3 \lambda_1 - \lambda_2] a_1^2 \cos_1 \gamma_1^2 \xi_1^2}{2} + \frac{3 \cos [3 \lambda_1 - \lambda_2] a_1^2 \cos_1 \gamma_1^2 \xi_1^2}{2} + \frac{3 \cos [3 \lambda_1 - \lambda_2] a_1^2 \cos_1 \gamma_1^2 \xi_1^2}{2} + \frac{3 \cos [3 \lambda_1 - \lambda_2] a_1^2 \cos_1 \gamma_1^2 \xi_1^2}{2} + \frac{3 \cos [3 \lambda_1 - \lambda_2] a_1^2 \cos_1 \gamma_1^2 \xi_1^2}{2} + \frac{3 \cos [3 \lambda_1 - \lambda_2] a_1^2 \cos_1 \gamma_1^2 \xi_1^2}{2} + \frac{3 \cos [3 \lambda_1 - \lambda_2] a_1^2 \cos_1 \gamma_1^2 \xi_1^2}{2} + \frac{3 \cos [3 \lambda_1 - \lambda_2] a_1^2 \cos_1 \gamma_1^2 \xi_1^2}{2} + \frac{3 \cos [3 \lambda_1 - \lambda_2] a_1^2 \cos_1 \gamma_1^2 \xi_1^2}{2} + \frac{3 \cos [3 \lambda_1 - \lambda_2] a_1^2 \cos_1 \gamma_1^2 \xi_1^2}{2} + \frac{3 \cos [3 \lambda_1 - \lambda_2] a_1^2 \cos_1 \gamma_1^2 \xi_1^2}{2} + \frac{3 \cos [3 \lambda_1 - \lambda_2] a_1^2 \cos_1 \gamma_1^2 \xi_1^2}{2} + \frac{3 \cos [3 \lambda_1 - \lambda_2] a_1^2 \cos_1 \gamma_1^2 \xi_1^2}{2} + \frac{3 \cos [3 \lambda_1 - \lambda_2] a_1^2 \cos_1 \gamma_1^2 \xi_1^2}{2} + \frac{3 \cos [3 \lambda_1 - \lambda_2] a_1^2 \cos_1 \gamma_1^2 \xi_1^2}{2} + \frac{3 \cos [3 \lambda_1 - \lambda_2] a_1^2 \cos_1 \gamma_1^2 \xi_1^2}{2} + \frac{3 \cos [3 \lambda_1 - \lambda_2] a_1^2 \cos_1 \gamma_1^2 \xi_1^2}{2} + \frac{3 \cos [3 \lambda_1 - \lambda_2] a_1^2 \cos_1 \gamma_1^2 \xi_1^2}{2} + \frac{3 \cos [3 \lambda_1 - \lambda_2] a_1^2 \cos_1 \gamma_1^2 \xi_1^2}{2} + \frac{3 \cos [3 \lambda_1 - \lambda_2] a_1^2 \cos_1 \gamma_1^2 \xi_1^2}{2} + \frac{3 \cos [3 \lambda_1 - \lambda_2] a_1^2 \cos_1 \gamma_1^2 \xi_1^2}{2} + \frac{3 \cos [3 \lambda_1 - \lambda_2] a_1^2 \cos_1 \gamma_1^2 \xi_1^2}{2} + 3 \cos [3 \lambda_1 - \lambda_2] a_1^2 \cos_1 \gamma_1^2 + \frac{3 \cos [3 \lambda_1 - \lambda_2] a_1^2 \cos_1 \gamma_1^2 + \frac{3 \cos [3 \lambda_1 - \lambda_2] a_1^2 \cos_1 \gamma_1^2 + \frac{3 \cos [3 \lambda_1 - \lambda_2] a_1^2 \cos_1 \gamma_1^2 + \frac{3 \cos [3 \lambda_1 - \lambda_2] \cos_1 \gamma_1^2 + \frac{3 \cos [3 \lambda_1 - \lambda_2] \cos_1 \gamma_1^2 + \frac{3 \cos [3 \lambda_1 - \lambda_2] \cos_1 \gamma_1^2 + \frac{3 \cos [3 \lambda_1 - \lambda_2] \cos_1 \gamma_1^$
$8 a_2^2 \gamma_2^2 \Lambda_1 \qquad 4 a_2^2 \gamma_2^2 \Lambda_1 \qquad 8 a_2^2 \gamma_2^2 \Lambda_1$
$\frac{3\cos[\lambda_1+\lambda_2]a_1^2\cos[\gamma_1^2\xi_1^2}{4} + \frac{3\cos[2\lambda_1-2\lambda_2]a_1^2\cos_2\gamma_1^2\xi_1^2}{4} + \frac{3\cos[4\lambda_1-2\lambda_2]a_1^2\cos_2\gamma_1^2\xi_1^2}{4}$
$8 a_2^2 \gamma_2^2 \Lambda_1 \qquad 4 a_2^2 \gamma_2^2 \Lambda_1 \qquad 8 a_2^2 \gamma_2^2 \Lambda_1$
$\frac{3\cos[2\lambda_2]a_1^2\cos_2\gamma_1^2\xi_1^2}{4} + \frac{3\cos[\lambda_1 - 3\lambda_2]a_1^2\cos_3\gamma_1^2\xi_1^2}{4} + \frac{3\cos[3\lambda_1 - 3\lambda_2]a_1^2\cos_3\gamma_1^2}{4} + \frac{3\cos[3\lambda_1 - 3\lambda_2]a_1^2\cos_3\gamma_1^2}{4} + \frac{3\cos[3\lambda_1 - 3\lambda_2]a_1^2\cos_3\gamma_1^2\cos_3\gamma_1^2}{4} + 3\cos[3\lambda_1 - 3\lambda_2]a_1^2\cos_3\gamma_$
$8 a_2^2 \gamma_2^2 \Lambda_1 \qquad \qquad 8 a_2^2 \gamma_2^2 \Lambda_1 \qquad \qquad 4 a_2^2 \gamma_2^2 \Lambda_1$
$\frac{3 \cos[5 \lambda_1 - 3 \lambda_2] a_1^2 \cos_3 \gamma_1^2 \xi_1^2}{4 \cos^2 (2 \lambda_1 - 3 \lambda_2) a_1^2 \cos^2 (2 \lambda_1 - 3 \lambda_2) a_$
$8 a_2^2 \gamma_2^2 \Lambda_1 \qquad 8 a_2 \gamma_2 \Lambda_1 \qquad 8 a_2 \gamma_2 \Lambda_1$
$\frac{3 \cos [\lambda_1 - \lambda_2] a_1 B 0_1 \gamma_1 \xi_1^2}{4 + \cos [2 \lambda_1] \cos [\lambda_1 - \lambda_2] a_1 B 0_1 \gamma_1 \xi_1^2} - \frac{1}{2} \cos [2 \lambda_1] \cos [\lambda_1 - \lambda_2] a_1 B 0_1 \gamma_1 \xi_1^2}{4 + \cos [2 \lambda_1] \cos [\lambda_1 - \lambda_2] a_1 B 0_1 \gamma_1 \xi_1^2} - \frac{1}{2} \cos [2 \lambda_1] \cos [\lambda_1 - \lambda_2] a_1 B 0_1 \gamma_1 \xi_1^2}{4 + \cos [2 \lambda_1] \cos [\lambda_1 - \lambda_2] a_1 B 0_1 \gamma_1 \xi_1^2} - \frac{1}{2} \cos [2 \lambda_1] \cos [\lambda_1 - \lambda_2] a_1 B 0_1 \gamma_1 \xi_1^2}{4 + \cos [\lambda_1 - \lambda_2] \cos [\lambda_1 - \lambda_2] a_1 B 0_1 \gamma_1 \xi_1^2} - \frac{1}{2} \cos [2 \lambda_1] \cos [\lambda_1 - \lambda_2] a_1 B 0_1 \gamma_1 \xi_1^2}{4 + \cos [\lambda_1 - \lambda_2] \cos [\lambda_1 - \lambda_2] a_1 B 0_1 \gamma_1 \xi_1^2} - \frac{1}{2} \cos [\lambda_1 - \lambda_2] \cos [\lambda_1 - \lambda_2] \cos [\lambda_1 - \lambda_2] a_1 B 0_1 \gamma_1 \xi_1^2}{4 + \cos [\lambda_1 - \lambda_2] \cos [\lambda_1 - \lambda_2]$
$4 a_2 \gamma_2 \Lambda_1 \qquad \qquad 4 a_2 \gamma_2 \Lambda_1$
$\frac{3 \cos \left[2 \left(\lambda_1-\lambda_2\right)\right] a_1 B 0_2 \gamma_1 \xi_1^2}{4 + \frac{\cos \left[2 \lambda_1\right] \cos \left[2 \left(\lambda_1-\lambda_2\right)\right] a_1 B 0_2 \gamma_1 \xi_1^2}{4 + \frac{\cos \left[2 \lambda_1\right] \cos \left[2 \left(\lambda_1-\lambda_2\right)\right] a_1 B 0_2 \gamma_1 \xi_1^2}{4 + \frac{\cos \left[2 \lambda_1\right] \cos \left[2 \left(\lambda_1-\lambda_2\right)\right] a_1 B 0_2 \gamma_1 \xi_1^2}} - \frac{1}{2 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2 + \frac{1}{2} + \frac{1}{2 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2 + \frac{1}{2} + \frac{1}{2 + \frac{1}{2} + \frac{1}{2 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2 + \frac{1}{2} + \frac{1}{2 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2 + \frac{1}{2} + \frac{1}{2 + \frac{1}{2} + \frac{1}{2 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2 + \frac{1}{2} + \frac{1}{2 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2 + \frac{1}{2} + \frac{1}{2 + \frac{1}{2} + \frac{1}{2 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2 + \frac{1}{2} + \frac{1}{2}$
$4 a_2 \gamma_2 \Lambda_1$ $4 a_2 \gamma_2 \Lambda_1$

$\frac{3 \cos[3 (\lambda_1 - \lambda_2)] a_1 B 0_3 \gamma_1 \xi_1^2}{\cos[2 \lambda_1] \cos[3 (\lambda_1 - \lambda_2)] a_1 B 0_3 \gamma_1 \xi_1^2} = \frac{1}{2} \cos[2 \lambda_1] \cos[3 (\lambda_1 - \lambda_2)] a_1 B 0_3 \gamma_1 \xi_1^2}{\cos[2 \lambda_1] \cos[3 (\lambda_1 - \lambda_2)] a_1 B 0_3 \gamma_1 \xi_1^2}$
$4 a_2 \gamma_2 \Lambda_1 \qquad \qquad 4 a_2 \gamma_2 \Lambda_1 \qquad \qquad -$
$\frac{3\cos[\lambda_1 - \lambda_2] a_1 \cos_0 \gamma_1 \xi_1^2}{2} + \frac{3\cos[3\lambda_1 - \lambda_2] a_1 \cos_0 \gamma_1 \xi_1^2}{2} - \frac{9\cos[\lambda_1 + \lambda_2] a_1 \cos_0 \gamma_1 \xi_1^2}{2} - \frac{10\cos[\lambda_1 + \lambda_2] a_1 \cos_0 \gamma_1 \xi_1^2}{2} - \frac{10\cos[\lambda_1 - \lambda_2] a_1 \cos_0 \gamma_1 \varepsilon_1^2}{2} - \frac{10\cos[\lambda_1 - \lambda_2] \alpha_1 \cos_0 \gamma_1 \varepsilon_1^2}{2$
4 $a_2 \gamma_2 \Lambda_1$ 8 $a_2 \gamma_2 \Lambda_1$ 8 $a_2 \gamma_2 \Lambda_1$
$\frac{3 a_1 C 0_1 \gamma_1 \xi_1^2}{2} = \frac{3 C 0 s [2 \lambda_1] a_1 C 0_1 \gamma_1 \xi_1^2}{2} = \frac{3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \xi_1^2}{2} + \frac{3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \xi_1^2}{2} + \frac{3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \xi_1^2}{2} + \frac{3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \xi_1^2}{2} + \frac{3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \xi_1^2}{2} + \frac{3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \xi_1^2}{2} + \frac{3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \xi_1^2}{2} + \frac{3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \xi_1^2}{2} + \frac{3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \xi_1^2}{2} + \frac{3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \xi_1^2}{2} + \frac{3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \xi_1^2}{2} + \frac{3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \xi_1^2}{2} + \frac{3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \xi_1^2}{2} + \frac{3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \xi_1^2}{2} + \frac{3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \xi_1^2}{2} + \frac{3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \xi_1^2}{2} + \frac{3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \xi_1^2}{2} + \frac{3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \xi_1^2}{2} + \frac{3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \xi_1^2}{2} + \frac{3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \xi_1^2}{2} + \frac{3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \xi_1^2}{2} + \frac{3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \xi_1^2}{2} + \frac{3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \xi_1^2}{2} + \frac{3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \xi_1^2}{2} + \frac{3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \xi_1^2}{2} + \frac{3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \xi_1^2}{2} + \frac{3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \xi_1^2}{2} + \frac{3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \xi_1^2}{2} + \frac{3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \xi_1^2}{2} + \frac{3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \xi_1^2}{2} + \frac{3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \xi_1^2}{2} + \frac{3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \xi_1^2}{2} + \frac{3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \xi_1^2}{2} + \frac{3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \xi_1^2}{2} + \frac{3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \xi_1^2}{2} + \frac{3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \xi_1^2}{2} + \frac{3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 \zeta_1^2}{2} + \frac{3 C 0 s [2 \lambda_1 - 2 \lambda_2] a_1 C 0_1 \gamma_1 \xi_1^2}{2} + 3 $
$4 a_2 \gamma_2 \Lambda_1 \qquad 4 a_2 \gamma_2 \Lambda_1 \qquad 4 a_2 \gamma_2 \Lambda_1$
$\frac{3 \cos \left[4 \lambda_1-2 \lambda_2\right] a_1 \operatorname{CO}_1 \gamma_1 \xi_1^2}{9 \cos \left[2 \lambda_2\right] a_1 \operatorname{CO}_1 \gamma_1 \xi_1^2} - \frac{9 \cos \left[\lambda_1-3 \lambda_2\right] a_1 \operatorname{CO}_2 \gamma_1 \xi_1^2}{9 \cos \left[\lambda_1-3 \lambda_2\right] a_1 \operatorname{CO}_2 \gamma_1 \xi_1^2}$
$8 a_2 \gamma_2 \Lambda_1 \qquad \qquad 8 a_2 \gamma_2 \Lambda_1 \qquad \qquad 8 a_2 \gamma_2 \Lambda_1$
$\frac{3 \cos \left[3 \lambda_1 - 3 \lambda_2\right] a_1 \cos \left[\gamma_1 \xi_1^2\right]}{2 \cos \left[5 \lambda_1 - 3 \lambda_2\right] a_1 \cos \left[\gamma_1 \xi_1^2\right]} - \frac{3 \cos \left[\lambda_1 - \lambda_2\right] a_1 \cos \left[\gamma_1 \xi_1^2\right]}{2 \cos \left[\lambda_1 - \lambda_2\right] a_1 \cos \left[\gamma_1 \xi_1^2\right]}$
$4 a_2 \gamma_2 \Lambda_1 \qquad \qquad 8 a_2 \gamma_2 \Lambda_1 \qquad \qquad 4 a_2 \gamma_2 \Lambda_1$
$\frac{9 \cos \left[3 \lambda_1 - \lambda_2\right] a_1 \cos \left[2 \lambda_1 - \xi_1^2\right]}{4 \cos \left[\lambda_1 + \lambda_2\right] a_1 \cos \left[\lambda_1 + \lambda_2\right] a_1 \cos \left[\lambda_1 - \xi_1^2\right]} - \frac{9 \cos \left[2 \lambda_1 - 4 \lambda_2\right] a_1 \cos \left[\lambda_1 + \lambda_2\right] a_1 \cos \left[\lambda_1 + \lambda_2\right]}{4 \cos \left[\lambda_1 - \xi_1^2\right] a_1 \cos \left[\lambda_1 - \xi_1^2\right]} - \frac{9 \cos \left[2 \lambda_1 - 4 \lambda_2\right] a_1 \cos \left[\lambda_1 - \xi_1^2\right]}{4 \cos \left[\lambda_1 - \xi_1^2\right] a_1 \cos \left[\lambda_1 + \lambda_2\right] a_1 \cos \left[\lambda_1 + \lambda_2\right]} - \frac{9 \cos \left[2 \lambda_1 - 4 \lambda_2\right] a_1 \cos \left[\lambda_1 - \xi_1^2\right] a_1 \cos \left[\lambda_1 + \lambda_2\right]}{4 \cos \left[\lambda_1 - \xi_1^2\right] a_1 \cos \left[\lambda_1 - \xi_1^2\right]} - 9 \cos \left[2 \lambda_1 - 4 \lambda_2\right] a_1 \cos \left[\lambda_1 + \xi_1^2\right] a_1 \cos \left[\lambda_1 + \xi_1^2\right] a_1 \cos \left[\lambda_1 - \xi_1^2\right] a_1 \cos \left[\lambda_1 - \xi_1^2\right] a_1 \cos \left[\lambda_1 + \xi_1^2\right] a_1 \cos \left[\lambda_1 - \xi_1^2\right] a_1 \cos \left[\lambda_1 + \xi_$
$8 a_2 \gamma_2 \Lambda_1 \qquad \qquad 8 a_2 \gamma_2 \Lambda_1 \qquad \qquad 8 a_2 \gamma_2 \Lambda_1$
$\frac{3 \cos[4 \lambda_1 - 4 \lambda_2] a_1 \cos_3 \gamma_1 \xi_1^2}{4 \cos[6 \lambda_1 - 4 \lambda_2] a_1 \cos_3 \gamma_1 \xi_1^2} - \frac{3 \cos[6 \lambda_1 - 4 \lambda_2] a_1 \cos_3 \gamma_1 \xi_1^2}{4 \cos^2 (1 + 2 \cos^2 (1 +$
$4 a_2 \gamma_2 \Lambda_1$ $8 a_2 \gamma_2 \Lambda_1$
$\frac{3 \cos [2 \lambda_1 - 2 \lambda_2] a_1 \cos_3 \gamma_1 \xi_1^2}{2 \cos [4 \lambda_1 - 2 \lambda_2] a_1 \cos_3 \gamma_1 \xi_1^2} + \frac{9 \cos [4 \lambda_1 - 2 \lambda_2] a_1 \cos_3 \gamma_1 \xi_1^2}{2 \cos^2 (4 \lambda_1 - 2 \lambda_2) a_1 \cos^2 (4 \lambda_1 - 2 \lambda_2) a_1 \cos^2 (4 \lambda_1 - 2 \lambda_2)} + \frac{1}{2 \cos^2 (4 \lambda_1 - 2 \lambda_2) a_1 \cos^2 (4 \lambda_1 - 2 \lambda_$
$4 a_2 \gamma_2 \Lambda_1$ $8 a_2 \gamma_2 \Lambda_1$
$\frac{3 \cos[2 \lambda_2] a_1 \cos_3 \gamma_1 \xi_1^2}{1 + \frac{3 \sin[\lambda_1 - 3 \lambda_2] B_0 \eta_2 \xi_2}{1 + \frac{3 \sin[\lambda_1 - 3 \lambda_2] B_0 \eta_2 \xi_2}{1 + \frac{3 \sin[\lambda_1 - 3 \lambda_2] B_0 \eta_2 \xi_2}{1 + \frac{3 \sin[\lambda_1 - 3 \lambda_2] B_0 \eta_2 \xi_2}{1 + \frac{3 \sin[\lambda_1 - 3 \lambda_2] B_0 \eta_2 \xi_2}} + \frac{3 \sin[\lambda_1 - 3 \lambda_2] B_0 \eta_2 \xi_2}{1 + \frac{3 \sin[\lambda_1 - 3 \lambda_2] B_0 \eta_2 \xi_2}{1 + \frac{3 \sin[\lambda_1 - 3 \lambda_2] B_0 \eta_2 \xi_2}{1 + \frac{3 \sin[\lambda_1 - 3 \lambda_2] B_0 \eta_2 \xi_2}{1 + \frac{3 \sin[\lambda_1 - 3 \lambda_2] B_0 \eta_2 \xi_2}{1 + \frac{3 \sin[\lambda_1 - 3 \lambda_2] B_0 \eta_2 \xi_2}{1 + \frac{3 \sin[\lambda_1 - 3 \lambda_2] B_0 \eta_2 \xi_2}{1 + \frac{3 \sin[\lambda_1 - 3 \lambda_2] B_0 \eta_2 \xi_2}} - \frac{\sin[\lambda_1 + \lambda_2] B_0 \eta_2 \xi_2}{1 + \frac{3 \sin[\lambda_1 - 3 \lambda_2] B_0 \eta_2 \xi_2}{1 + \frac{3 \sin[\lambda_1 - 3 \lambda_2] B_0 \eta_2 \xi_2}{1 + \frac{3 \sin[\lambda_1 - 3 \lambda_2] B_0 \eta_2 \xi_2}{1 + \frac{3 \sin[\lambda_1 - 3 \lambda_2] B_0 \eta_2 \xi_2}{1 + \frac{3 \sin[\lambda_1 - 3 \lambda_2] B_0 \eta_2 \xi_2}}} + \frac{3 \sin[\lambda_1 - 3 \lambda_2] B_0 \eta_2 \xi_2}{1 + \frac{3 \sin[\lambda_1 - 3 \lambda_2] B_0 \eta_2 \xi_2}{1 + \frac{3 \sin[\lambda_1 - 3 \lambda_2] B_0 \eta_2 \xi_2}{1 + \frac{3 \sin[\lambda_1 - 3 \lambda_2] B_0 \eta_2 \xi_2}{1 + \frac{3 \sin[\lambda_1 - 3 \lambda_2] B_0 \eta_2 \xi_2}{1 + \frac{3 \sin[\lambda_1 - 3 \lambda_2] B_0 \eta_2 \xi_2}{1 + \frac{3 \sin[\lambda_1 - 3 \lambda_2] B_0 \eta_2 \xi_2}{1 + \frac{3 \sin[\lambda_1 - 3 \lambda_2] B_0 \eta_2 \xi_2}}}} + \frac{3 \sin[\lambda_1 - 3 \lambda_2] B_0 \eta_2 \xi_2}{1 + \frac{3 \sin[\lambda_1 - 3 \lambda_2] B_0 \eta_2 \xi_2}{1 + \frac{3 \sin[\lambda_1 - 3 \lambda_2] B_0 \eta_2 \xi_2}{1 + \frac{3 \sin[\lambda_1 - 3 \lambda_2] B_0 \eta_2 \xi_2}{1 + \frac{3 \sin[\lambda_1 - 3 \lambda_2] B_0 \eta_2 \xi_2}{1 + \frac{3 \sin[\lambda_1 - 3 \lambda_2] B_0 \eta_2 \xi_2}{1 + \frac{3 \sin[\lambda_1 - 3 \lambda_2] B_0 \eta_2 \xi_2}{1 + \frac{3 \sin[\lambda_1 - 3 \lambda_2] B_0 \eta_2 \xi_2}}}}}$
$8 a_2 \gamma_2 \Lambda_1$ $8 \Lambda_2$ $8 \Lambda_2$
$\frac{3\cos[\lambda_1-\lambda_2]\sin[\lambda_1-3\lambda_2]B0_1\eta_2\xi_2}{2} - \frac{\cos[\lambda_1-\lambda_2]\sin[\lambda_1+\lambda_2]B0_1\eta_2\xi_2}{2} + \frac{\cos[\lambda_1-\lambda_2]\sin[\lambda_1+\lambda_2]B0_1\eta_2\xi_2}{2} + \frac{\cos[\lambda_1-\lambda_2]\sin[\lambda_1-3\lambda_2]B0_1\eta_2\xi_2}{2} + \frac{\cos[\lambda_1-\lambda_2]B0_1\eta_2\xi_2}{2} + \cos[\lambda_1-\lambda_2]B0_1\eta_2\xi$
$4\Lambda_2$ $4\Lambda_2$
$\frac{3\cos[2(\lambda_1-\lambda_2)]\sin[\lambda_1-3\lambda_2]Bu_2\eta_2\varsigma_2}{4\lambda_1-\lambda_2} - \frac{\cos[2(\lambda_1-\lambda_2)]\sin[\lambda_1+\lambda_2]Bu_2\eta_2\varsigma_2}{4\lambda_1-\lambda_2} +$
$4\Lambda_2 \qquad 4\Lambda_2 \qquad \qquad 4\Lambda_2$ $3\operatorname{Cos}[3(\lambda_1 - \lambda_2)]\operatorname{Sin}[\lambda_1 - 3(\lambda_2)]\operatorname{Blana} \mathcal{E}_2 \qquad \qquad \operatorname{Cos}[3(\lambda_1 - \lambda_2)]\operatorname{Sin}[\lambda_1 + \lambda_2]\operatorname{Blana} \mathcal{E}_2$
$\frac{4 \lambda_{0}}{4 \lambda_{0}} = \frac{4 \lambda_{0}}{4 \lambda_{0}}$
27 sin[2 λ_1] C0 ₀ $\eta_2 \xi_2$ 3 sin[2 $\lambda_1 - 4 \lambda_2$] C0 ₀ $\eta_2 \xi_2$ 9 sin[2 λ_2] C0 ₀ $\eta_2 \xi_2$
16 Λ ₂ + 16 Λ ₂ + 8 Λ ₂ +
$3 \sin[3\lambda_1 - 5\lambda_2] \operatorname{CO}_1 \eta_2 \xi_2 15 \sin[\lambda_1 - 3\lambda_2] \operatorname{CO}_1 \eta_2 \xi_2 27 \sin[3\lambda_1 - \lambda_2] \operatorname{CO}_1 \eta_2 \xi_2$
16 Λ ₂ 16 Λ ₂ 16 Λ ₂
$\frac{9\sin[\lambda_1 + \lambda_2] \cos_1 \eta_2 \xi_2}{1 + 2} + \frac{9\sin[2\lambda_1] \cos_2 \eta_2 \xi_2}{1 + 2} + \frac{3\sin[4\lambda_1 - 6\lambda_2] \cos_2 \eta_2 \xi_2}{1 + 2} - \frac{1}{2}$
16 Λ ₂ 8 Λ ₂ 16 Λ ₂
$\frac{9\sin[2\lambda_1 - 4\lambda_2]\cos_2\eta_2\xi_2}{-\frac{27\sin[4\lambda_1 - 2\lambda_2]\cos_2\eta_2\xi_2}{-\frac{27\sin[4\lambda_1 - 2\lambda_2]\cos_2\eta_2\xi_2}{-\frac{15\sin[2\lambda_2]\cos_2\eta_2}{-\frac{15\sin[2\lambda_2]\cos_2\eta_2}{-\frac{15\sin[2\lambda_2]\cos_2\eta_2}{-\frac{15\sin[2\lambda_2]\cos_2\eta_2}{-\frac{15\sin[2\lambda_2]\cos_2\eta_2}{-\frac{15\sin[2\lambda_2]\cos_2\eta_2}{-\frac{15\sin[2\lambda_2]\cos_2\eta_2}{-\frac{15\sin[2\lambda_2]\cos_2\eta_2}{-\frac{15\sin[2\lambda_2]\cos_2\eta_2}{-\frac{15\sin[2\lambda_2]\cos_2\eta_2}{-\frac{15\sin[2\lambda_2]\cos_2\eta_2}{-\frac{15\sin[2\lambda_2]\cos_2\eta_2}{-15\sin[2\lambda_2]\cos_$
$8 \Lambda_2$ $16 \Lambda_2$ $8 \Lambda_2$
$\frac{3 \sin[5 \lambda_1 - 7 \lambda_2] \cos \eta_2 c_2}{4 \cos \eta_2 c_2} = \frac{9 \sin[3 \lambda_1 - 5 \lambda_2] \cos \eta_2 c_2}{4 \cos \eta_2 c_2} + \frac{27 \sin[\lambda_1 - 3 \lambda_2] \cos \eta_2 c_2}{4 \cos \eta_2 c_2} = -\frac{1}{2}$
$\frac{16 \Lambda_2}{27 \operatorname{Sin} [5 \lambda_1 - 3 \lambda_2] \operatorname{CO}_2 n_2 \mathcal{E}_2} = 9 \operatorname{Sin} [3 \lambda_1 - \lambda_2] \operatorname{CO}_2 n_2 \mathcal{E}_2 = 3 \operatorname{Sin} [\lambda_1 + \lambda_2] \operatorname{CO}_2 n_2 \mathcal{E}_2}$
$\frac{16 \Lambda_2}{16 \Lambda_2} + \frac{8 \Lambda_2}{8 \Lambda_2} - \frac{16 \Lambda_2}{16 \Lambda_2} + \frac{16 \Lambda_2}{16 \Lambda_2} - 16 \Lambda$
$\operatorname{Cos}[\lambda_2] \operatorname{Sin}[\lambda_2] \operatorname{a}_2 \operatorname{B0}_0 \gamma_2 \eta_2 \xi_2 \qquad \operatorname{Cos}[\lambda_1 - \lambda_2] \operatorname{Cos}[\lambda_2] \operatorname{Sin}[\lambda_2] \operatorname{a}_2 \operatorname{B0}_1 \gamma_2 \eta_2 \xi_2$
$2 a_1 \gamma_1 \Lambda_2$ $a_1 \gamma_1 \Lambda_2$
$\cos\left[2\left(\lambda_{1}-\lambda_{2}\right)\right]\cos\left[\lambda_{2}\right]\sin\left[\lambda_{2}\right]a_{2}BO_{2}\gamma_{2}\eta_{2}\xi_{2}$
$\frac{\cos[3(\lambda_1 - \lambda_2)]\cos[\lambda_2]\sin[\lambda_2]a_2BO_3\gamma_2\eta_2\xi_2}{+} + \frac{3\sin[\lambda_1 - 3\lambda_2]a_2CO_0\gamma_2\eta_2\xi_2}{+} + \frac{3\sin[\lambda_1 - 3\lambda_2]a_2CO_0\gamma_2\eta_2\xi_2}{+}$
$a_1 \gamma_1 \Lambda_2 \qquad \qquad 4 a_1 \gamma_1 \Lambda_2$
$\frac{9\sin[\lambda_1 + \lambda_2] a_2 CO_0 \gamma_2 \eta_2 \xi_2}{4} + \frac{9\sin[2\lambda_1] a_2 CO_1 \gamma_2 \eta_2 \xi_2}{4} + \frac{9\sin[2\lambda_1] a_2 CO_1 \gamma_2 \eta_2 \xi_2}{4} + \frac{1}{2}$
$4 a_1 \gamma_1 \Lambda_2 \qquad 4 a_1 \gamma_1 \Lambda_2$
$\frac{3 \sin[2 \lambda_1 - 4 \lambda_2] a_2 \operatorname{CU}_1 \gamma_2 \eta_2 \zeta_2}{4 + \frac{3 \sin[2 \lambda_2] a_2 \operatorname{CU}_1 \gamma_2 \eta_2 \zeta_2}{4 + \frac{3 \sin[2 \lambda_2] a_2 \operatorname{CU}_1 \gamma_2 \eta_2 \zeta_2}{4 + \frac{3 \sin[2 \lambda_2] \alpha_2 \operatorname{CU}_1 \gamma_2 \eta_2 \zeta_2}{4 + \frac{3 \sin[2 \lambda_2] \alpha_2 \operatorname{CU}_1 \gamma_2 \eta_2 \zeta_2}{4 + \frac{3 \sin[2 \lambda_2] \alpha_2 \operatorname{CU}_1 \gamma_2 \eta_2 \zeta_2}{4 + \frac{3 \sin[2 \lambda_2] \alpha_2 \operatorname{CU}_1 \gamma_2 \eta_2 \zeta_2}{4 + \frac{3 \sin[2 \lambda_2] \alpha_2 \operatorname{CU}_1 \gamma_2 \eta_2 \zeta_2}{4 + \frac{3 \sin[2 \lambda_2] \alpha_2 \operatorname{CU}_1 \gamma_2 \eta_2 \zeta_2}{4 + \frac{3 \sin[2 \lambda_2] \alpha_2 \operatorname{CU}_1 \gamma_2 \eta_2 \zeta_2}{4 + \frac{3 \sin[2 \lambda_2] \alpha_2 \operatorname{CU}_1 \gamma_2 \eta_2 \zeta_2}{4 + \frac{3 \sin[2 \lambda_2] \alpha_2 \operatorname{CU}_1 \gamma_2 \eta_2 \zeta_2}{4 + \frac{3 \sin[2 \lambda_2] \alpha_2 \operatorname{CU}_1 \gamma_2 \eta_2 \zeta_2}{4 + \frac{3 \sin[2 \lambda_2] \alpha_2 \operatorname{CU}_1 \gamma_2 \eta_2 \zeta_2}{4 + \frac{3 \sin[2 \lambda_2] \alpha_2 \operatorname{CU}_1 \gamma_2 \eta_2 \zeta_2}{4 + \frac{3 \sin[2 \lambda_2] \alpha_2 \operatorname{CU}_1 \gamma_2 \eta_2 \zeta_2}{4 + \frac{3 \sin[2 \lambda_2] \alpha_2 \operatorname{CU}_1 \gamma_2 \eta_2 \zeta_2}{4 + \frac{3 \sin[2 \lambda_2] \alpha_2 \operatorname{CU}_1 \gamma_2 \eta_2 \zeta_2}{4 + \frac{3 \sin[2 \lambda_2] \alpha_2 \operatorname{CU}_1 \gamma_2 \eta_2 \zeta_2}{4 + \frac{3 \sin[2 \lambda_2] \alpha_2 \operatorname{CU}_1 \gamma_2 \eta_2 \zeta_2}{4 + \frac{3 \sin[2 \lambda_2] \alpha_2 \operatorname{CU}_1 \gamma_2 \eta_2 \zeta_2}{4 + \frac{3 \sin[2 \lambda_2] \alpha_2 \operatorname{CU}_1 \gamma_2 \eta_2 \zeta_2}{4 + \frac{3 \sin[2 \lambda_2] \alpha_2 \operatorname{CU}_1 \gamma_2 \eta_2 \zeta_2}{4 + \frac{3 \sin[2 \lambda_2] \alpha_2 \operatorname{CU}_1 \gamma_2 \eta_2 \zeta_2}{4 + \frac{3 \sin[2 \lambda_2] \alpha_2 \operatorname{CU}_1 \gamma_2 \eta_2 \zeta_2}{4 + \frac{3 \sin[2 \lambda_2] \alpha_2 \operatorname{CU}_1 \gamma_2 \eta_2 \zeta_2}{4 + \frac{3 \sin[2 \lambda_2] \alpha_2 \operatorname{CU}_1 \gamma_2 \eta_2 \zeta_2}{4 + \frac{3 \sin[2 \lambda_2] \alpha_2 \operatorname{CU}_1 \gamma_2 \eta_2 \zeta_2}{4 + \frac{3 \sin[2 \lambda_2] \alpha_2 \operatorname{CU}_1 \gamma_2 \eta_2 \zeta_2}{4 + \frac{3 \sin[2 \lambda_2] \alpha_2 \operatorname{CU}_1 \gamma_2 \eta_2 \zeta_2}{4 + \frac{3 \sin[2 \lambda_2] \alpha_2 \operatorname{CU}_1 \gamma_2 \eta_2 \zeta_2}{4 + \frac{3 \sin[2 \lambda_2] \alpha_2 \operatorname{CU}_1 \gamma_2 \eta_2 \zeta_2}{4 + \frac{3 \sin[2 \lambda_2] \alpha_2 \operatorname{CU}_1 \gamma_2 \eta_2 \zeta_2}{4 + \frac{3 \sin[2 \lambda_2] \alpha_2 \operatorname{CU}_1 \gamma_2 \eta_2 \zeta_2}{4 + \frac{3 \sin[2 \lambda_2] \alpha_2 \operatorname{CU}_1 \gamma_2 \eta_2 \zeta_2}{4 + \frac{3 \sin[2 \lambda_2] \alpha_2 \operatorname{CU}_1 \gamma_2 \eta_2 \zeta_2}}}}}}}}$
$4 a_1 \gamma_1 \Lambda_2 \qquad 2 a_1 \gamma_1 \Lambda_2$ $3 sin[3]_{1} = 5 \lambda_1 = c_0 \gamma_2 n_2 \xi_2 \qquad 9 sin[\lambda_1 = 3 \lambda_1] = c_0 \gamma_2 n_2 \xi_2$
4 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -
ral 11 m2 ral 11 m2

$$\frac{9 \sin[3 \lambda_1 - \lambda_2] \cos(2y_1y_1 \xi_2)}{4 \sin(1/1 \lambda_2)} \frac{9 \sin[(\lambda_1 + \lambda_2)] \sin(2x_1 y_1 \xi_2)}{4 \sin(1/1 \lambda_2)} \frac{9 \sin[(\lambda_1 - \lambda_2)] \sin(2x_1 y_1 \xi_2)}{4 \sin(1/1 \lambda_2)} \frac{9 \sin[(\lambda_1 - \lambda_2)] \sin(2x_1 y_1 \xi_2)}{4 \sin(1/1 \lambda_2)} \frac{9 \sin[(\lambda_1 - \lambda_2)] \sin(2x_1 y_1 \xi_2)}{4 \sin(1/1 \lambda_2)} \frac{9 \sin[(\lambda_1 - \lambda_2)] \sin(2x_1 y_1 \xi_2)}{4 \sin(1/1 \lambda_2)} \frac{9 \sin[(\lambda_1 - \lambda_2)] \sin(2x_1 y_1 \xi_2)}{4 \sin(1/1 \lambda_2)} \frac{9 \sin[(\lambda_1 - \lambda_2)] \sin(2x_1 y_1 \xi_2)}{4 \sin(1/1 \lambda_2)} \frac{9 \sin[(\lambda_1 - \lambda_2)] \sin(2x_1 y_1 \xi_2)}{4 \sin(1/1 \lambda_2)} \frac{9 \sin[(\lambda_1 - \lambda_2)] \sin(2x_1 y_1 \xi_2)}{4 \sin(1/1 \lambda_2)} \frac{9 \sin[(\lambda_1 - \lambda_2)] \sin(2x_1 y_1 \xi_2)}{4 \sin(1/1 \lambda_2)} \frac{9 \sin[(\lambda_1 - \lambda_2)] \sin(2x_1 y_1 \xi_2)}{4 \sin(1/1 \lambda_2)} \frac{9 \sin[(\lambda_1 - \lambda_2)] \sin(2x_1 y_1 \xi_2)}{4 \sin(1/1 \lambda_2)} \frac{9 \sin[(\lambda_1 - \lambda_2)] \sin(2x_1 y_1 \xi_2)}{4 \sin(1/1 \lambda_2)} \frac{9 \sin[(\lambda_1 - \lambda_2)] \sin(\lambda_2)}{4 \sin(1/1 \lambda_2)} \frac{9 \sin(\lambda_2 - \lambda_2)}{4 \sin(1/1 \lambda_$$

$$\begin{split} \frac{9 \sin[2\lambda_1](2\lambda_1](20_3 \eta_1 \xi_2)}{16 \sqrt{\Lambda_1} \sqrt{\Lambda_2}} & \frac{9 \sin[4\lambda_1 - 6\lambda_2](20_3 \eta_1 \xi_2)}{16 \sqrt{\Lambda_1} \sqrt{\Lambda_2}} & \frac{9 \sin[6\lambda_1 - 6\lambda_2](20_3 \eta_1 \xi_2)}{16 \sqrt{\Lambda_1} \sqrt{\Lambda_2}} & \frac{9 \sin[6\lambda_1 - 4\lambda_2](20_3 \eta_1 \xi_2)}{16 \sqrt{\Lambda_1} \sqrt{\Lambda_2}} \\ \frac{21 \sin[2\lambda_1 - 2\lambda_2](20_3 \eta_1 \xi_2)}{16 \sqrt{\Lambda_1} \sqrt{\Lambda_2}} & \frac{21 \sin[4\lambda_1 - 4\lambda_2](20_3 \eta_1 \xi_2)}{16 \sqrt{\Lambda_1} \sqrt{\Lambda_2}} & \frac{9 \sin[2\lambda_1](2\lambda_1 - 2\lambda_2](20_3 \eta_1 \xi_2)}{16 \sqrt{\Lambda_1} \sqrt{\Lambda_2}} \\ \frac{9 \sin[2\lambda_1](2\lambda_1 - 2\lambda_2](20_3 \eta_1 \xi_2)}{16 \sqrt{\Lambda_1} \sqrt{\Lambda_2}} & \frac{9 \sin[2\lambda_1](2\lambda_2)(20_3 \eta_1 \xi_2)}{16 \sqrt{\Lambda_1} \sqrt{\Lambda_2}} & \frac{9 \sin[2\lambda_2](20_3 \eta_1 \xi_2)}{16 \sqrt{\Lambda_1} \sqrt{\Lambda_2}} \\ \frac{9 \sin[2\lambda_1](2\lambda_1 - 2\lambda_2](20_1 \eta_1 \xi_2)}{16 \sqrt{\Lambda_1} \sqrt{\Lambda_2}} & \frac{9 \sin[2\lambda_1](2\lambda_1 - 2\lambda_2](20_1 \eta_1 \eta_1 \xi_2)}{16 \sqrt{\Lambda_1} \sqrt{\Lambda_2}} & \frac{9 \sin[2\lambda_2](2\lambda_1 \eta_1 \eta_1 \xi_2)}{16 \sqrt{\Lambda_1} \sqrt{\Lambda_2}} \\ \frac{9 \sin[2\lambda_1](2\lambda_1 - 3\lambda_2](20_1 \eta_1 \eta_1 \xi_2)}{16 \sqrt{\Lambda_1} \sqrt{\Lambda_2}} & \frac{9 \sin[2\lambda_1](2\lambda_1 - 3\lambda_2](20_1 \eta_1 \eta_1 \xi_2)}{16 \sqrt{\Lambda_1} \sqrt{\Lambda_2}} \\ \frac{9 \sin[2\lambda_1](2\lambda_1 - 3\lambda_2](20_1 \eta_1 \eta_1 \xi_2)}{16 \sqrt{\Lambda_1} \sqrt{\Lambda_2}} & \frac{9 \sin[2\lambda_1](2\lambda_1 - 3\lambda_2](20_1 \eta_1 \eta_1 \xi_2)}{16 \sqrt{\Lambda_1} \sqrt{\Lambda_2}} \\ \frac{9 \sin[2\lambda_1 - 3\lambda_2](20_1 \eta_1 \eta_1 \xi_2)}{16 \sqrt{\Lambda_1} \sqrt{\Lambda_2}} & \frac{9 \sin[2\lambda_1 - 3\lambda_2](20_1 \eta_1 \eta_1 \xi_2)}{16 \sqrt{\Lambda_1} \sqrt{\Lambda_2}} \\ \frac{9 \sin[2\lambda_1 - 3\lambda_2](20_1 \eta_1 \eta_1 \xi_2)}{16 \sqrt{\Lambda_1} \sqrt{\Lambda_2}} & \frac{9 \sin[2\lambda_1 - 4\lambda_2](20_1 \eta_1 \eta_1 \xi_2)}{16 \sqrt{\Lambda_1} \sqrt{\Lambda_2}} \\ \frac{9 \sin[(2\lambda_1 - 4\lambda_2)](20_1 \eta_1 \eta_1 \xi_2)}{16 \sqrt{\Lambda_1} \sqrt{\Lambda_2}} & \frac{9 \sin[(2\lambda_1) - 3\lambda_2](20_1 \eta_1 \eta_1 \xi_2)}{16 \sqrt{\Lambda_1} \sqrt{\Lambda_2}} \\ \frac{9 \sin[(\lambda_1 - 3\lambda_2)](20_1 \eta_1 \eta_1 \xi_2)}{16 \sqrt{\Lambda_1} \sqrt{\Lambda_2}} & \frac{9 \sin[(2\lambda_1) - 3\lambda_2](20_1 \eta_1 \eta_1 \xi_2)}{16 \sqrt{\Lambda_1} \sqrt{\Lambda_2}} \\ \frac{9 \sin[(\lambda_1 - 3\lambda_2)](20_1 \eta_1 \eta_1 \xi_2)}{16 \sqrt{\Lambda_1} \sqrt{\Lambda_2}} & \frac{9 \sin[(2\lambda_1) - 3\lambda_2](20_1 \eta_2 \eta_1 \xi_2)}{16 \sqrt{\Lambda_1} \sqrt{\Lambda_2}} \\ \frac{9 \sin[(\lambda_1 - 3\lambda_2)](20_1 \eta_2 \eta_1 \xi_2)}{16 \sqrt{\Lambda_1} \sqrt{\Lambda_2}} & \frac{9 \sin[(2\lambda_1 - 3\lambda_2](20_1 \eta_2 \eta_1 \xi_2)}{16 \sqrt{\Lambda_1} \sqrt{\Lambda_2}} \\ \frac{9 \sin[(\lambda_1 - 3\lambda_2](20_1 \eta_2 \eta_1 \xi_2)}{16 \sqrt{\Lambda_1} \sqrt{\Lambda_2}} & \frac{9 \sin[(2\lambda_1 - 3\lambda_2](20_1 \eta_2 \eta_1 \xi_2)}{16 \sqrt{\Lambda_1} \sqrt{\Lambda_2}} \\ \frac{9 \sin[(\lambda_1 - \lambda_2](20_1 \eta_2 \eta_1 \xi_2)}{16 \sqrt{\Lambda_1} \sqrt{\Lambda_2}} & \frac{9 \sin[(2\lambda_1 - 3\lambda_2](20_1 \eta_2 \eta_1 \xi_2)}{16 \sqrt{\Lambda_1} \sqrt{\Lambda_2}} \\ \frac{9 \sin[(\lambda_1 - \lambda_2](20_1 \eta_2 \eta_1 \xi_2)}{16 \sqrt{\Lambda_1} \sqrt{\Lambda_2}} & \frac{9 \sin[(2\lambda_1 - 3\lambda_2](20_1 \eta_2 \eta_1 \xi_2)}{16 \sqrt{\Lambda_1} \sqrt{\Lambda_2}} \\ \frac{9 \sin[(\lambda_$$

$\frac{\cos[\lambda_1 - \lambda_2] \cos[2(\lambda_1 - \lambda_2)] B0_1 \xi_1 \xi_2}{2} = \frac{3 \cos[\lambda_1 - \lambda_2] \cos[2\lambda_2] B0_1 \xi_1 \xi_2}{2}$
$4\sqrt{\Lambda_1}\sqrt{\Lambda_2}$ $4\sqrt{\Lambda_1}\sqrt{\Lambda_2}$
9 Cos [2 $(\lambda_1 - \lambda_2)$] B0 ₂ $\xi_1 \xi_2$ 3 Cos [2 λ_1] Cos [2 $(\lambda_1 - \lambda_2)$] B0 ₂ $\xi_1 \xi_2$
$4\sqrt{\Lambda_1}\sqrt{\Lambda_2}$ - $4\sqrt{\Lambda_1}\sqrt{\Lambda_2}$ +
$\cos[2(\lambda_1 - \lambda_2)]^2 B0_2 \xi_1 \xi_2 = 3 \cos[2(\lambda_1 - \lambda_2)] \cos[2\lambda_2] B0_2 \xi_1 \xi_2$
$\frac{1}{4 \sqrt{2}} = \frac{1}{\sqrt{2}} = \frac$
9 Cos[3 $(\lambda_1 - \lambda_2)$] B02 \mathcal{E}_1 $\mathcal{E}_2 = 3$ Cos[2 λ_1] Cos[3 $(\lambda_1 - \lambda_2)$] B02 \mathcal{E}_1 \mathcal{E}_2
$\frac{1}{4 \sqrt{\Delta_{12}}} = \frac{1}{4 \sqrt{\Delta_{12}}} + \frac{1}$
$= \sqrt{n_1} \sqrt{n_2}$ $= \sqrt{n_1} \sqrt{n_2}$ $Cos[2(\lambda_1 - \lambda_2)] Cos[3(\lambda_1 - \lambda_2)] B0_2 \xi_1 \xi_2 = 3 Cos[3(\lambda_1 - \lambda_2)] Cos[2\lambda_2] B0_2 \xi_1 \xi_2$
$\frac{1}{4 \sqrt{\Delta_2} \sqrt{\Delta_2}} = \frac{1}{4 \sqrt{\Delta_2} \sqrt{\Delta_2}} = \frac{1}$
$9 \cos[\lambda_1 - 3 \lambda_2] = 0_0 \xi_1 \xi_2$ $3 \cos[3 \lambda_1 - 3 \lambda_2] = 0_0 \xi_1 \xi_2$ $21 \cos[\lambda_1 - \lambda_2] = 0_0 \xi_1 \xi_2$
$\frac{16\sqrt{\Delta_2}}{16\sqrt{\Delta_2}} + \frac{16\sqrt{\Delta_2}}{16\sqrt{\Delta_2}} + \frac{16\sqrt{\Delta_2}}{16\sqrt{\Delta_2}} - \frac{16\sqrt{\Delta_2}}{16\sqrt{\Delta_2}} + \frac{16\sqrt{\Delta_2}}{16\sqrt{\Delta_2}} - 16$
$9 \cos[3\lambda_1 - \lambda_2] = \cos[\lambda_1 + \lambda_2] = \cos$
$\frac{16 \sqrt{\Delta_2}}{16 \sqrt{\Delta_2}} + \frac{16 \sqrt{\Delta_2}}{\sqrt{\Delta_2}} + \frac{16 \sqrt{\Delta_2}}{\Delta_$
$\frac{10 \sqrt{n_1} \sqrt{n_2}}{33 \cos[2\lambda_1] \cos[2\lambda_2] - 4 \cos[2\lambda_2] -$
$\frac{16\sqrt{\Lambda}}{16\sqrt{\Lambda}} = \frac{16\sqrt{\Lambda}}{16\sqrt{\Lambda}} + 16$
$3 \cos[2\lambda_1 - 2\lambda_2] \cos[4\lambda_2 - 2\lambda_2] \cos[4\lambda_2] \cos[4\lambda_2] \cos[4\lambda_2] \cos[4\lambda_2] $
$\frac{1}{2} \sqrt{\frac{1}{2}} \sqrt{\frac{1}{2}} = \frac{1}{2} \sqrt{\frac{1}{2}} \sqrt{\frac{1}{2}} = \frac{1}{2} \sqrt{\frac{1}{2}} \sqrt{\frac{1}{2}} + \frac{1}{2} \sqrt{\frac{1}{2}} \sqrt{\frac{1}{2}} = \frac{1}{2} \sqrt{\frac{1}{2}} \sqrt{\frac{1}{2}} = \frac{1}{2} \sqrt{\frac{1}{2}} \sqrt{\frac{1}{2}} \sqrt{\frac{1}{2}} = \frac{1}{2} \sqrt{\frac{1}{2}} \sqrt{\frac{1}{2}} \sqrt{\frac{1}{2}} \sqrt{\frac{1}{2}} = \frac{1}{2} \sqrt{\frac{1}{2}} \sqrt{\frac{1}{2$
$2 \sqrt{n_1} \sqrt{n_2} \qquad 10 \sqrt{n_1} \sqrt{n_2} \qquad 10 \sqrt{n_1} \sqrt{n_2}$ $9 \cos[3\lambda_1 - 5\lambda_2] \cos[5\lambda_2 - 5\lambda_2] \cos[5\lambda_1 - 5\lambda_2] \cos[5\lambda_2 - 3\lambda_2] \cos[5\lambda_1 - 3\lambda_2] \cos[5\lambda_2 - 3\lambda_2] \cos[5\lambda_2] \cos[5\lambda_2]$
$\frac{1}{16\sqrt{2}} + \frac{1}{16\sqrt{2}} + \frac{1}$
$\frac{10 \sqrt{n_1} \sqrt{n_2}}{21 \cos[3 \lambda_1 - 3 \lambda_2] \cos[5 \lambda_2 - 3 \lambda_2] \cos[5 \lambda_2] \cos[5 \lambda_2] \cos[5 \lambda_2] \cos[5 \lambda_2] \cos[5 \lambda_2] \cos[5 $
$\frac{11 \cos[6 x_1 - 6 x_2] \cos_2 g_1 g_2}{16 \sqrt{4}} = \frac{16 \sqrt{4} \cos 2 g_1 g_2}{16 \sqrt{4}} + \frac{16 \cos[x_1 - x_2] \cos_2 g_1}{16 \sqrt{4}} + 16$
$16 \sqrt{\Lambda_1} \sqrt{\Lambda_2} \qquad 16 \sqrt{\Lambda_1} \sqrt{\Lambda_2} \qquad 2 \sqrt{\Lambda_1} \sqrt{\Lambda_2}$ $21 \cos[3\lambda_1 - \lambda_2] \cos[5\lambda_2 - \beta \cos[\lambda_1 + \lambda_2] \cos[5\lambda_2 - \beta \cos[\lambda_1 + \lambda_2] \cos[\lambda_1 - \lambda_2] \cos[\lambda_2] \cos[\lambda_1 - \lambda_2] \cos[\lambda_2] \cos[\lambda_1 - \lambda_2] \cos[\lambda_2] \cos[\lambda_1 - \lambda_2] \cos[\lambda_2] \cos[\lambda_$
$11000[0 \times 1 - 1 \times 2] 002[0 \times 1 + 1 \times 2] 002[0 \times$
$9 \cos[4\lambda_1 - 6\lambda_2] \cos[6\lambda_2 - 6\lambda_2] \cos[6\lambda_1 - 6\lambda_2] \cos[6\lambda_1 - 6\lambda_2] \cos[6\lambda_1 - 4\lambda_2] \cos[$
$\frac{1}{16\sqrt{\Lambda}} + \frac{1}{\sqrt{\Lambda}} + \frac$
$\frac{10 \sqrt{n_1} \sqrt{n_2}}{21 \cos[4 \lambda_1 - 4 \lambda_2] \cos \xi_1 \xi_2} = \frac{10 \sqrt{n_1} \sqrt{n_2}}{9 \cos[6 \lambda_1 - 4 \lambda_2] \cos \xi_1 \xi_2} = \frac{10 \sqrt{n_1} \sqrt{n_2}}{21 \cos[2 \lambda_1 - 2 \lambda_2] \cos \xi_1 \xi_2}$
$\frac{16\sqrt{\Delta_{1}}\sqrt{\Delta_{2}}}{16\sqrt{\Delta_{2}}} = \frac{16\sqrt{\Delta_{2}}\sqrt{\Delta_{2}}}{16\sqrt{\Delta_{2}}} + \frac{16\sqrt{\Delta_{2}}\sqrt{\Delta_{2}}}{16\Delta_$
$\frac{16 \sqrt{n_1} \sqrt{n_2}}{21 \cos[4 \lambda_1 - 2 \lambda_2] \cos \xi_1 \xi_2} = \frac{16 \sqrt{n_1} \sqrt{n_2}}{9 \cos[2 \lambda_2] \cos \xi_1 \xi_2} = \frac{16 \sqrt{n_1} \sqrt{n_2}}{9 a_1 \cos \chi_1 \xi_1 \xi_2}$
$\frac{1}{16\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac$
$9 \cos[2\lambda_1] a_1 \cos[2\lambda_1 - 2\lambda_2] a_1 \cos[2\lambda_1 - 2\lambda_2] a_1 \cos[2\lambda_2 - 3\cos[2\lambda_2] a_1 \cos[2\lambda_2] a_1 \cos[$
$3 \cos[\lambda_1 - 3 \lambda_2] = 100_1 \gamma_1 \xi_1 \xi_2$ $3 \cos[3 \lambda_1 - 3 \lambda_2] = 100_1 \gamma_1 \xi_1 \xi_2$
$5 \alpha_2 \beta_2 \sqrt{n_1} \sqrt{n_2} = 5 \alpha_2 \beta_2 \sqrt{n_1} \sqrt{n_2} = 15 \cos[\lambda_1 - \lambda_2] a_1 $
$\frac{1}{8} = \frac{1}{2} = \frac{1}{8} = \frac{1}{2} = \frac{1}$
$3 \cos[\lambda_1 + \lambda_2] a_1 C0_1 \gamma_1 \xi_1 \xi_2 \qquad 3 a_1 C0_2 \gamma_1 \xi_1 \xi_2 \qquad 3 Cos[2 \lambda_1] a_1 C0_2 \gamma_1 \xi_1 \xi_2$
$\frac{1}{4 a_2 \chi_2 \sqrt{\lambda_1} \sqrt{\lambda_2}} + \frac{1}{8 a_2 \chi_2 \sqrt{\lambda_2} \sqrt{\lambda_2}} + \frac{1}{8 a_2 \chi_2 \sqrt{\lambda_2}} +$
$3 \cos[2 \lambda_1 - 4 \lambda_2] a_1 \cos[2 \gamma_1 \xi_1 \xi_2] = 3 \cos[4 \lambda_1 - 4 \lambda_2] a_1 \cos[2 \gamma_1 \xi_1 \xi_2]$
$= \frac{8 a_2 Y_2 \sqrt{\Delta_1} \sqrt{\Delta_2}}{8 a_2 Y_2 \sqrt{\Delta_1} \sqrt{\Delta_2}} = \frac{8 a_2 Y_2 \sqrt{\Delta_1} \sqrt{\Delta_2}}{8 a_2 Y_2 \sqrt{\Delta_1} \sqrt{\Delta_2}}$
9 Cos $[2 \lambda_1 - 2 \lambda_2]$ a $CO_2 \gamma_1 \xi_1 \xi_2$ 9 Cos $[4 \lambda_1 - 2 \lambda_2]$ a $CO_2 \gamma_1 \xi_1 \xi_2$
$\frac{4}{4} a_2 \chi_2 \sqrt{\Delta_1} \sqrt{\Delta_2} \qquad \qquad$
$9 \cos[2\lambda_2] a_1 \cos[2\lambda_1] \xi_1 \xi_2 = 3 \cos[3\lambda_1 - 5\lambda_2] a_1 \cos_3 \chi_1 \xi_1 \xi_2$
$\frac{1}{8 a_2 \chi_2 \sqrt{\Delta_1} \sqrt{\Delta_2}} + \frac{1}{8 a_2 \chi_2 \sqrt{\Delta_1} \sqrt{\Delta_2}} + \frac{1}{8 a_2 \chi_2 \sqrt{\Delta_1} \sqrt{\Delta_2}}$
$3 \cos[5 \lambda_1 - 5 \lambda_2] a_1 \cos_3 \gamma_1 \xi_1 \xi_2 \qquad 9 \cos[\lambda_1 - 3 \lambda_2] a_1 \cos_3 \gamma_1 \xi_1 \xi_2$
$\frac{8}{2} \times 2 \sqrt{\Delta_1} \sqrt{\Delta_2} = \frac{8}{2} \times 2 \sqrt{\Delta_1} \sqrt{\Delta_2} = \frac{1}{2} \sqrt{\Delta_1} \sqrt{\Delta_1} = \frac{1}{2} \sqrt{\Delta_1} \sqrt{\Delta_1} = \frac{1}{2} \sqrt{\Delta_1} \Delta_2$
2 82 V ** 1 V ** 2 0 02 82 V ** 1 V ** 2

$$\begin{array}{l} \frac{9 \cos[3\lambda_1 - 3\lambda_2] \sin(20_3\gamma_1\xi_1\xi_2)}{4 \sin^2 2\sqrt{\lambda_1}\sqrt{\lambda_2}} & \frac{9 \cos[5\lambda_1 - 3\lambda_2] \sin(20_3\gamma_1\xi_1\xi_2)}{8 \sin^2 2\sqrt{\lambda_1}\sqrt{\lambda_2}} & \frac{9 \sin^2 2(0_1\gamma_2\xi_1\xi_2)}{8 \sin^2 2\sqrt{\lambda_1}\sqrt{\lambda_2}} & \frac{9 \sin^2 2(0_1\gamma_2\xi_1\xi_2)}{8 \sin^2 2\sqrt{\lambda_1}\sqrt{\lambda_2}} & \frac{9 \cos[2\lambda_1] \sin^2 2(0_1\gamma_2\xi_1\xi_2)}{8 \sin^2 2\sqrt{\lambda_1}\sqrt{\lambda_1}\sqrt{\lambda_2}} & \frac{9 \sin^2 2(\lambda_1)\sqrt{\lambda_1}\sqrt{\lambda_2}}{8 \sin^2 2\sqrt{\lambda_1}\sqrt{\lambda_1}\sqrt{\lambda_2}} & \frac{9 \sin^2 2(\lambda_1)\sqrt{\lambda_1}\sqrt{\lambda_2}}{8 \sin^2 2\sqrt{\lambda_1}\sqrt{\lambda_1}\sqrt{\lambda_2}} & \frac{9 \sin^2 2(\lambda_1)\sqrt{\lambda_1}\sqrt{\lambda_2}}{8 \sin^2 2\sqrt{\lambda_1}\sqrt{\lambda_1}\sqrt{\lambda_2}} & \frac{9 \cos[2\lambda_1] \sin^2 2(0_2\gamma_2\xi_1\xi_2)}{8 \sin^2 2\sqrt{\lambda_1}\sqrt{\lambda_1}\sqrt{\lambda_2}} & \frac{9 \sin^2 2(\lambda_1)\sqrt{\lambda_1}\sqrt{\lambda_2}}{8 \sin^2 2\sqrt{\lambda_1}\sqrt{\lambda_1}\sqrt{\lambda_2}} & \frac{9 \cos(2\lambda_1) \sin^2 2(\lambda_2)\sqrt{\lambda_1}\sqrt{\lambda_2}}{8 \sin^2 2\sqrt{\lambda_1}\sqrt{\lambda_1}\sqrt{\lambda_2}} & \frac{9 \sin^2 2(\lambda_1)\sqrt{\lambda_1}\sqrt{\lambda_2}}{8 \sin^2 2\sqrt{\lambda_1}\sqrt{\lambda_1}\sqrt{\lambda_2}} & \frac{9 \cos(2\lambda_1) \sin^2 2(\lambda_2)\sqrt{\lambda_1}\sqrt{\lambda_2}}{8 \sin^2 2\sqrt{\lambda_1}\sqrt{\lambda_1}\sqrt{\lambda_2}} & \frac{9 \cos(2\lambda_1) \sin^2 2(\lambda_2)\sqrt{\lambda_2}}{8 \sin^2 2\sqrt{\lambda_2}} & \frac{9 \cos(2\lambda_1) \sin^2 2(\lambda_2)\sqrt{\lambda_2}}{8 \cos^2 2\sqrt{\lambda_2}} & \frac{9 \cos(2\lambda_1) \sin^2 2(\lambda_2$$

$9 \cos[3 \lambda_1 - 5 \lambda_2] \cos_3 \xi_2^2 - 9 \cos(3 \lambda_1 - 5 \lambda_2)$	$\cos [5 \lambda_1 - 5 \lambda_2] CO_3 \xi_2^2$ 27 Co	$s[\lambda_1 - 3 \lambda_2] CO_3 \xi_2^2$		
16 A2	16 A ₂ +	32 Λ ₂ +		
$\frac{15\cos[3\lambda_1 - 3\lambda_2]\cos_3\xi_2^2}{2} = \frac{27}{2}$	$7 \cos \left[5 \lambda_1 - 3 \lambda_2 \right] \cos \left[5 \frac{2}{2} \right] $	$\cos\left[\lambda_1 - \lambda_2\right] \operatorname{CO}_3 \xi_2^2$		
8 Λ ₂ +	32 A2	16 A2		
$\frac{9\cos\left[3\lambda_1-\lambda_2\right]\cos_3\xi_2^2}{4} + \frac{3\cos^2\xi_1^2}{4}$	$ [\lambda_1 + \lambda_2] CO_3 \xi_2^2 = \frac{3 a_2 BO_0 \gamma_2}{2} $	ξ_2^2 + $\frac{\cos[2\lambda_2]a_2B0_0\gamma_2\xi_2^2}{\xi_2^2}$		
16 A ₂	32 Λ ₂ 8 a ₁ γ ₁ Λ	2 8 a ₁ γ ₁ Λ ₂		
$\frac{3 \cos [\lambda_1 - \lambda_2] a_2 B 0_1 \gamma_2 \xi_2^2}{4 + \cos [\lambda_1 - \lambda_2] \cos [2 \lambda_2] a_2 B 0_1 \gamma_2 \xi_2^2} =$				
4 a ₁ γ ₁ Λ ₂	$4 a_1 \gamma_1 \Lambda_2$			
$\frac{3\cos\left[2\left(\lambda_{1}-\lambda_{2}\right)\right]a_{2}BO_{2}\gamma_{2}\xi_{2}^{2}}{\left(\lambda_{1}-\lambda_{2}\right)}$	$\frac{\cos[2(\lambda_1 - \lambda_2)] \cos[2\lambda_2]}{2}$	$] a_2 B 0_2 \gamma_2 \xi_2^2$		
$4 a_1 \gamma_1 \Lambda_2$	4 a ₁ γ ₁ Λ ₂			
$\frac{3\cos[3(\lambda_1-\lambda_2)]a_2BO_3\gamma_2\xi_2^2}{2}$	$\frac{\cos[3(\lambda_1 - \lambda_2)]\cos[2\lambda_2]}{2}$	$] a_2 B 0_3 \gamma_2 \xi_2^2$		
$4 a_1 \gamma_1 \Lambda_2$	$4 a_1 \gamma_1 \Lambda_2$	Ŧ		
$\frac{3 \cos [\lambda_1 - 3 \lambda_2] a_2 CO_0 \gamma_2 \xi_2^2}{-} = -$	$\frac{3\cos[\lambda_1 - \lambda_2] a_2 \operatorname{CO}_0 \gamma_2 \xi_2^2}{2} = -$	$9 \cos[\lambda_1 + \lambda_2] a_2 CO_0 \gamma_2 \xi_2^2$		
8 a ₁ γ ₁ Λ ₂	4 a ₁ γ ₁ Λ ₂	8 a ₁ γ ₁ Λ ₂		
$\frac{3 a_2 CO_1 \gamma_2 \xi_2^2}{9 Cos [2 \lambda_1] a_2} = \frac{9 Cos [2 \lambda_1] a_2}{2}$	$\frac{2}{2} \frac{\text{CO}_1 \gamma_2 \xi_2^2}{2} + \frac{3 \cos[2 \lambda_1 - 4 \lambda_2]}{2}$	$] a_2 CO_1 \gamma_2 \xi_2^2$		
$4 a_1 \gamma_1 \Lambda_2$ $8 a_1 \gamma_1$	Λ ₂ 8 a ₁ γ ₁	Δ ₂		
$\frac{3\cos\left[2\lambda_1-2\lambda_2\right]a_2\mathrm{CO}_1\gamma_2\xi_2^2}{2}$	$-\frac{3\cos[2\lambda_{2}]a_{2}\cos_{1}\gamma_{2}\xi_{2}^{2}}{+}$	$3 \cos[3 \lambda_1 - 5 \lambda_2] a_2 \cos_2 \gamma_2 \xi_2^2$		
4 a ₁ γ ₁ Λ ₂	4 $a_1 \gamma_1 \Lambda_2$	8 a ₁ γ ₁ Λ ₂		
$9 \cos [\lambda_1 - 3 \lambda_2] a_2 CO_2 \gamma_2 \xi_2^2$	$3 \cos [3 \lambda_1 - 3 \lambda_2] a_2 CO_2 \gamma_2 \xi$	$\frac{2}{2}$ 3 Cos[$\lambda_1 - \lambda_2$] a ₂ CO ₂ $\gamma_2 \xi_2^2$		
8 a ₁ γ ₁ Λ ₂	4 a ₁ γ ₁ Λ ₂	4 a ₁ γ ₁ Λ ₂		
$= \frac{8 a_1 \gamma_1 \Lambda_2}{9 \cos [3 \lambda_1 - \lambda_2] a_2 \operatorname{CO}_2 \gamma_2 \xi_2^2} +$	$\frac{4 a_1 \gamma_1 \Lambda_2}{3 \cos [\lambda_1 + \lambda_2] a_2 \operatorname{CO}_2 \gamma_2 \xi_2^2} + $	$\frac{4 a_1 \gamma_1 \Lambda_2}{3 \cos \left[2 \lambda_1\right] a_2 \cos_3 \gamma_2 \xi_2^2} +$		
$\frac{8 a_1 \gamma_1 \Lambda_2}{9 \cos[3 \lambda_1 - \lambda_2] a_2 \cos_2 \gamma_2 \xi_2^2} + 8 a_1 \gamma_1 \Lambda_2$	$\frac{4 a_1 \gamma_1 \Lambda_2}{3 \cos \left[\lambda_1 + \lambda_2\right] a_2 \operatorname{CO}_2 \gamma_2 \xi_2^2}{8 a_1 \gamma_1 \Lambda_2} + $	$\frac{4 a_1 \gamma_1 \Lambda_2}{3 \cos[2 \lambda_1] a_2 \cos_3 \gamma_2 \xi_2^2} + 8 a_1 \gamma_1 \Lambda_2$		
$\frac{8 a_1 \gamma_1 \Lambda_2}{9 \cos[3 \lambda_1 - \lambda_2] a_2 \cos_2 \gamma_2 \xi_2^2} + 8 a_1 \gamma_1 \Lambda_2} + \frac{3 \cos[4 \lambda_1 - 6 \lambda_2] a_2 \cos_3 \gamma_2 \xi_2^2}{2}$	$\frac{4 a_1 \gamma_1 \Lambda_2}{3 \cos [\lambda_1 + \lambda_2] a_2 \cos_2 \gamma_2 \xi_2^2} + \frac{8 a_1 \gamma_1 \Lambda_2}{9 \cos [2 \lambda_1 - 4 \lambda_2] a_2 \cos_3 \gamma_2}$	$\frac{4 a_1 \gamma_1 \Lambda_2}{3 \cos \left[2 \lambda_1\right] a_2 \cos_3 \gamma_2 \xi_2^2} + 8 a_1 \gamma_1 \Lambda_2}$		
$\frac{8 a_1 \gamma_1 \Lambda_2}{9 \cos[3 \lambda_1 - \lambda_2] a_2 \cos_2 \gamma_2 \xi_2^2} + \frac{8 a_1 \gamma_1 \Lambda_2}{3 \cos[4 \lambda_1 - 6 \lambda_2] a_2 \cos_3 \gamma_2 \xi_2^2}$	$ \frac{4 a_1 \gamma_1 \Lambda_2}{3 \cos [\lambda_1 + \lambda_2] a_2 \cos [\gamma_2 \zeta_2^2]} + \frac{8 a_1 \gamma_1 \Lambda_2}{9 \cos [2 \lambda_1 - 4 \lambda_2] a_2 \cos \gamma_2} + \frac{9 \cos [2 \lambda_1 - 4 \lambda_2] a_2 \cos \gamma_2}{8 a_1 \gamma_1 \Lambda_2} $	$\frac{4 a_1 \gamma_1 \Lambda_2}{3 \cos[2 \lambda_1] a_2 \cos_3 \gamma_2 \xi_2^2} + 8 a_1 \gamma_1 \Lambda_2 + \xi_2^2}$		
$\frac{8 a_1 \gamma_1 \Lambda_2}{9 \cos[3 \lambda_1 - \lambda_2] a_2 \cos_2 \gamma_2 \xi_2^2} + \frac{8 a_1 \gamma_1 \Lambda_2}{3 \cos[4 \lambda_1 - 6 \lambda_2] a_2 \cos_3 \gamma_2 \xi_2^2} + \frac{3 \cos[4 \lambda_1 - 6 \lambda_2] a_2 \cos_3 \gamma_2 \xi_2^2}{8 a_1 \gamma_1 \Lambda_2}$	$ \frac{4 a_1 \gamma_1 \Lambda_2}{3 \cos [\lambda_1 + \lambda_2] a_2 C 0_2 \gamma_2 \xi_2^2} + \frac{8 a_1 \gamma_1 \Lambda_2}{9 \cos [2 \lambda_1 - 4 \lambda_2] a_2 C 0_3 \gamma_2} + \frac{9 \cos [2 \lambda_1 - 4 \lambda_2] a_2 C 0_3 \gamma_2}{8 a_1 \gamma_1 \Lambda_2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] a_2 C 0_3 \gamma_2}{2 \cos [2 \lambda_1 - 2 \lambda_2] a_2 C 0_3 \gamma_2} $	$\frac{4 a_1 \gamma_1 \Lambda_2}{3 \cos \left[2 \lambda_1\right] a_2 \cos \left[2 \lambda_2\right] + 8 a_1 \gamma_1 \Lambda_2} + \frac{\xi_2^2}{2}$		
$\frac{8 a_1 \gamma_1 \Lambda_2}{9 \cos[3 \lambda_1 - \lambda_2] a_2 \cos_2 \gamma_2 \xi_2^2} + \frac{8 a_1 \gamma_1 \Lambda_2}{3 \cos[4 \lambda_1 - 6 \lambda_2] a_2 \cos_3 \gamma_2 \xi_2^2} + \frac{3 \cos[4 \lambda_1 - 6 \lambda_2] a_2 \cos_3 \gamma_2 \xi_2^2}{8 a_1 \gamma_1 \Lambda_2}$	$ \frac{4 a_1 \gamma_1 \Lambda_2}{3 \cos [\lambda_1 + \lambda_2] a_2 \cos 2 \gamma_2 \xi_2^2} + \frac{8 a_1 \gamma_1 \Lambda_2}{9 \cos [2 \lambda_1 - 4 \lambda_2] a_2 \cos \gamma_2} + \frac{9 \cos [2 \lambda_1 - 4 \lambda_2] a_2 \cos \gamma_2}{8 a_1 \gamma_1 \Lambda_2} - \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] a_2 \cos \gamma_2}{4 a_1 \gamma_1 \Lambda_2} $	$\frac{4 a_1 \gamma_1 \Lambda_2}{3 \cos[2 \lambda_1] a_2 \cos_3 \gamma_2 \xi_2^2} + \frac{8 a_1 \gamma_1 \Lambda_2}{2 \xi_2^2} + \frac{1}{2 \xi_2^2}$		
$\frac{8 a_1 \gamma_1 \Lambda_2}{9 \cos[3 \lambda_1 - \lambda_2] a_2 \cos_2 \gamma_2 \xi_2^2} + \frac{8 a_1 \gamma_1 \Lambda_2}{3 \cos[4 \lambda_1 - 6 \lambda_2] a_2 \cos_3 \gamma_2 \xi_2^2} + \frac{3 \cos[4 \lambda_1 - 6 \lambda_2] a_2 \cos_3 \gamma_2 \xi_2^2}{8 a_1 \gamma_1 \Lambda_2}$ $\frac{3 \cos[4 \lambda_1 - 4 \lambda_2] a_2 \cos_3 \gamma_2 \xi_2^2}{4 a_1 \gamma_1 \Lambda_2}$ $9 \cos[4 \lambda_1 - 2 \lambda_2] a_2 \cos_3 \gamma_2 \xi_2^2$	$\frac{4 a_1 \gamma_1 \Lambda_2}{3 \cos [\lambda_1 + \lambda_2] a_2 C 0_2 \gamma_2 \xi_2^2} + \frac{8 a_1 \gamma_1 \Lambda_2}{8 a_1 \gamma_1 \Lambda_2} + \frac{9 \cos [2 \lambda_1 - 4 \lambda_2] a_2 C 0_3 \gamma_2}{8 a_1 \gamma_1 \Lambda_2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] a_2 C 0_3 \gamma_2}{4 a_1 \gamma_1 \Lambda_2} + \frac{3 a_2^2 C 0_0 \gamma_2^2 \xi_2^2}{4 a_2 \gamma_1^2} + \frac{3 \cos [2 \lambda_2]}{4 a_2 \gamma_1^2} + $	$\frac{4 a_1 \gamma_1 \Lambda_2}{3 \cos[2 \lambda_1] a_2 \cos_3 \gamma_2 \xi_2^2} + 8 a_1 \gamma_1 \Lambda_2 + \frac{\xi_2^2}{2} + \frac{\xi_2^2}{2} - \frac{\xi_2^2}{2} - \frac{1}{2} a_2^2 \cos_0 \gamma_2^2 \xi_2^2} + \frac{\xi_2^2}{2} + $		
$\frac{8 a_1 \gamma_1 \Lambda_2}{9 \cos[3 \lambda_1 - \lambda_2] a_2 \cos_2 \gamma_2 \xi_2^2} + \frac{8 a_1 \gamma_1 \Lambda_2}{3 \cos[4 \lambda_1 - 6 \lambda_2] a_2 \cos_3 \gamma_2 \xi_2^2} + \frac{3 \cos[4 \lambda_1 - 6 \lambda_2] a_2 \cos_3 \gamma_2 \xi_2^2}{8 a_1 \gamma_1 \Lambda_2} + \frac{3 \cos[4 \lambda_1 - 4 \lambda_2] a_2 \cos_3 \gamma_2 \xi_2^2}{4 a_1 \gamma_1 \Lambda_2} + \frac{9 \cos[4 \lambda_1 - 2 \lambda_2] a_2 \cos_3 \gamma_2 \xi_2^2}{8 a_1 \gamma_1 \Lambda_2}$	$ \frac{4 a_1 \gamma_1 \Lambda_2}{3 \cos [\lambda_1 + \lambda_2] a_2 \cos_2 \gamma_2 \xi_2^2} + \frac{3 a_1 \gamma_1 \Lambda_2}{9 \cos [2 \lambda_1 - 4 \lambda_2] a_2 \cos_3 \gamma_2} + \frac{9 \cos [2 \lambda_1 - 4 \lambda_2] a_2 \cos_3 \gamma_2}{8 a_1 \gamma_1 \Lambda_2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] a_2 \cos_3 \gamma_2}{4 a_1 \gamma_1 \Lambda_2} + \frac{3 a_2^2 \cos_3 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [2 \lambda_2]}{8 a_1^$	$\frac{4 a_1 \gamma_1 \Lambda_2}{4 a_2 C_{0_3} \gamma_2 \xi_2^2} + \frac{3 c_0 s_1 (2 \lambda_1) a_2 c_{0_3} \gamma_2 \xi_2^2}{8 a_1 \gamma_1 \Lambda_2} + \frac{2 \xi_2^2}{2} - \frac{1}{2 \xi_2^2} - \frac{1}{2 \xi_2^2} + \frac{1}$		
$\frac{8 a_1 \gamma_1 \Lambda_2}{9 \cos[3 \lambda_1 - \lambda_2] a_2 C_0 2 \gamma_2 \xi_2^2} + \frac{8 a_1 \gamma_1 \Lambda_2}{3 \cos[4 \lambda_1 - 6 \lambda_2] a_2 C_0 2 \gamma_2 \xi_2^2} + \frac{3 \cos[4 \lambda_1 - 6 \lambda_2] a_2 C_0 2 \gamma_2 \xi_2^2}{8 a_1 \gamma_1 \Lambda_2}$ $\frac{3 \cos[4 \lambda_1 - 4 \lambda_2] a_2 C_0 2 \gamma_2 \xi_2^2}{4 a_1 \gamma_1 \Lambda_2}$ $\frac{9 \cos[4 \lambda_1 - 2 \lambda_2] a_2 C_0 2 \gamma_2 \xi_2^2}{8 a_1 \gamma_1 \Lambda_2} + \frac{3 \cos[\lambda_1 - 3 \lambda_2] a_2^2 C_0 2 \gamma_2^2 \xi_2^2}{2 \alpha_2 C_0 2 \gamma_2^2 \xi_2^2} + \frac{3 \alpha_1 \gamma_1 \Lambda_2}{2 \alpha_2 C_0 2 \gamma_2^2 \xi_2^2} + \frac{3 \alpha_1 \gamma_1 \Lambda_2}{2 \alpha_2 C_0 2 \gamma_2^2 \xi_2^2} + \frac{3 \alpha_1 \gamma_1 \Lambda_2}{2 \alpha_2 C_0 2 \gamma_2^2 \xi_2^2} + \frac{3 \alpha_1 \gamma_1 \Lambda_2}{2 \alpha_2 C_0 2 \gamma_2^2 \xi_2^2} + \frac{3 \alpha_1 \gamma_1 \Lambda_2}{2 \alpha_2 C_0 2 \gamma_2^2 \xi_2^2} + \frac{3 \alpha_1 \gamma_1 \Lambda_2}{2 \alpha_2 C_0 2 \gamma_2^2 \xi_2^2} + \frac{3 \alpha_1 \gamma_1 \Lambda_2}{2 \alpha_2 C_0 2 \gamma_2^2 \xi_2^2} + \frac{3 \alpha_1 \gamma_1 \Lambda_2}{2 \alpha_2 C_0 2 \gamma_2^2 \xi_2^2} + \frac{3 \alpha_1 \gamma_1 \Lambda_2}{2 \alpha_2 C_0 2 \gamma_2^2 \xi_2^2} + \frac{3 \alpha_1 \gamma_1 \Lambda_2}{2 \alpha_2 C_0 2 \gamma_2^2 \xi_2^2} + \frac{3 \alpha_1 \gamma_1 \Lambda_2}{2 \alpha_2 C_0 2 \gamma_2^2 \xi_2^2} + \frac{3 \alpha_1 \gamma_1 \Lambda_2}{2 \alpha_2 C_0 2 \gamma_2^2 \xi_2^2} + \frac{3 \alpha_1 \gamma_1 \Lambda_2}{2 \alpha_2 C_0 2 \gamma_2^2 \xi_2^2} + \frac{3 \alpha_1 \gamma_1 \Lambda_2}{2 \alpha_2 C_0 2 \gamma_2^2 \xi_2^2} + \frac{3 \alpha_1 \gamma_1 \Lambda_2}{2 \alpha_2 C_0 2 \gamma_2^2 \xi_2^2} + \frac{3 \alpha_1 \gamma_1 \Lambda_2}{2 \alpha_2 C_0 2 \gamma_2^2 \xi_2^2} + \frac{3 \alpha_1 \gamma_1 \Lambda_2}{2 \alpha_2 C_0 2 \gamma_2^2 \xi_2^2} + \frac{3 \alpha_1 \gamma_1 \Lambda_2}{2 \alpha_2 C_0 2 \gamma_2^2 \xi_2^2} + \frac{3 \alpha_1 \gamma_1 \Lambda_2}{2 \alpha_2 C_0 2 \gamma_2^2 \xi_2^2} + \frac{3 \alpha_1 \gamma_1 \Lambda_2}{2 \alpha_2 C_0 2 \gamma_2^2 \xi_2^2} + \frac{3 \alpha_1 \gamma_1 \Lambda_2}{2 \alpha_2 C_0 2 \gamma_2^2 \xi_2^2} + \frac{3 \alpha_1 \gamma_1 \Lambda_2}{2 \alpha_2 C_0 2 \gamma_2^2 \xi_2^2} + \frac{3 \alpha_1 \gamma_1 \Lambda_2}{2 \alpha_2 C_0 2 \gamma_2^2 \xi_2^2} + \frac{3 \alpha_1 \gamma_1 \Lambda_2}{2 \alpha_2 C_0 2 \gamma_2^2 \xi_2^2} + \frac{3 \alpha_1 \gamma_1 \Lambda_2}{2 \alpha_2 C_0 2 \gamma_2^2 \xi_2^2} + \frac{3 \alpha_1 \gamma_1 \Lambda_2}{2 \alpha_2 C_0 2 \gamma_2^2 \xi_2^2} + \frac{3 \alpha_1 \gamma_1 \Lambda_2}{2 \alpha_2 C_0 2 \gamma_2^2 \xi_2^2} + \frac{3 \alpha_1 \gamma_1 \Lambda_2}{2 \alpha_2 C_0 2 \gamma_2^2 \xi_2^2} + \frac{3 \alpha_1 \gamma_1 \Lambda_2}{2 \alpha_2 C_0 2 \gamma_2^2 \xi_2^2} + \frac{3 \alpha_1 \gamma_1 \Lambda_2}{2 \alpha_2 C_0 2 \gamma_2^2 \xi_2^2} + \frac{3 \alpha_1 \gamma_1 \Lambda_2}{2 \alpha_2 C_0 2 \gamma_2^2 \xi_2^2} + \frac{3 \alpha_1 \gamma_1 \Lambda_2}{2 \alpha_2 C_0 2 \gamma_2^2 \xi_2^2} + \frac{3 \alpha_1 \gamma_1 \Lambda_2}{2 \alpha_2 C_0 2 \gamma_2^2 \xi_2^2} + \frac{3 \alpha_1 \gamma_1 \Lambda_2}{2 \alpha_2 C_0 2 \gamma_2^2 \xi_2^2} + \frac{3 \alpha_1 \gamma_1 \Lambda_2}{2 \alpha_2 C_0 2 \gamma_2^2 \xi_2^2} + \frac{3 \alpha_1 \gamma_1 \Lambda_2}{2 \alpha_2 C_0 2 \gamma_2^2 \xi_2^2} + \frac{3 \alpha_1 \gamma_1 \Lambda_2}{2 \alpha_2 C_0 2 \gamma_2^2 \xi_2^2} + \frac{3 \alpha_1 \gamma_1 \Lambda_2}{2 \alpha_2 C_0 2 \gamma_2^2 \xi_2^2} + 3 \alpha_1 $	$\frac{4 a_1 \gamma_1 \Lambda_2}{3 \cos [\lambda_1 + \lambda_2] a_2 C_{0_2} \gamma_2 \xi_2^2} + \frac{8 a_1 \gamma_1 \Lambda_2}{8 a_1 \gamma_1 \Lambda_2} - \frac{9 \cos [2 \lambda_1 - 4 \lambda_2] a_2 C_{0_3} \gamma_2}{8 a_1 \gamma_1 \Lambda_2} - \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] a_2 C_{0_3} \gamma_2}{4 a_1 \gamma_1 \Lambda_2} + \frac{3 a_2^2 C_{0_0} \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [2 \lambda_2]}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [2 \lambda_2] \lambda_2^2 C_{0_1} \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [\lambda_1 - \lambda_2] a_2^2 C_{0_1} \gamma_2^2 \xi_2^2}{8 a_1^2 \zeta_2^2 \zeta_2^2} + \frac{3 \cos [\lambda_1 - \lambda_2] a_2^2 C_{0_1} \gamma_2^2 \xi_2^2}{4 \alpha_1 \gamma_1^2 \zeta_2^2 \zeta_2^2} + \frac{3 \cos [\lambda_1 - \lambda_2] \alpha_2^2 C_{0_1} \gamma_2^2 \zeta_2^2}{4 \alpha_1 \gamma_1^2 \zeta_2^2 \zeta_2^2} + \frac{3 \cos [\lambda_1 - \lambda_2] \alpha_2^2 C_{0_1} \gamma_2^2 \zeta_2^2}{4 \alpha_1 \gamma_1^2 \zeta_2^2 \zeta_2^2} + \frac{3 \cos [\lambda_1 - \lambda_2] \alpha_2^2 C_{0_1} \gamma_2^2 \zeta_2^2}{4 \alpha_1 \gamma_1^2 \zeta_2^2 \zeta_2^2} + \frac{3 \cos [\lambda_1 - \lambda_2] \alpha_2^2 C_{0_1} \gamma_2^2 \zeta_2^2}{4 \alpha_1 \gamma_1^2 \zeta_2^2 \zeta_2^2} + \frac{3 \cos [\lambda_1 - \lambda_2] \alpha_2^2 C_{0_1} \gamma_2^2 \zeta_2^2}{4 \alpha_1^2 \zeta_2^2 \zeta_2^2} + \frac{3 \cos [\lambda_1 - \lambda_2] \alpha_2^2 C_{0_1} \gamma_2^2 \zeta_2^2}{4 \alpha_1^2 \zeta_2^2 \zeta_2^2} + \frac{3 \cos [\lambda_1 - \lambda_2] \alpha_2^2 C_{0_1} \gamma_2^2 \zeta_2^2}{4 \alpha_1^2 \zeta_2^2 \zeta_2^2} + \frac{3 \cos [\lambda_1 - \lambda_2] \alpha_2^2 C_{0_1} \gamma_2^2 \zeta_2^2}{4 \alpha_1^2 \zeta_2^2 \zeta_2^2} + \frac{3 \cos [\lambda_1 - \lambda_2] \alpha_2^2 C_{0_1} \gamma_2^2 \zeta_2^2}{4 \alpha_1^2 \zeta_2^2 \zeta_2^2} + \frac{3 \cos [\lambda_1 - \lambda_2] \alpha_2^2 C_{0_1} \gamma_2^2 \zeta_2^2}{4 \alpha_1^2 \zeta_2^2 \zeta_2^2} + \frac{3 \cos [\lambda_1 - \lambda_2] \alpha_2^2 C_{0_1} \gamma_2^2 \zeta_2^2}{4 \alpha_1^2 \zeta_2^2 \zeta_2^2} + \frac{3 \cos [\lambda_1 - \lambda_2] \alpha_2^2 C_{0_1} \gamma_2^2 \zeta_2^2}{4 \alpha_1^2 \zeta_2^2 \zeta_2^2} + \frac{3 \cos [\lambda_1 - \lambda_2] \alpha_2^2 C_{0_1} \gamma_2^2 \zeta_2^2}{4 \alpha_1^2 \zeta_2^2 \zeta_2^2} + \frac{3 \cos [\lambda_1 - \lambda_2] \alpha_2^2 C_{0_1} \gamma_2^2 \zeta_2^2}{4 \alpha_1^2 \zeta_2^2 \zeta_2^2} + \frac{3 \cos [\lambda_1 - \lambda_2] \alpha_2^2 C_{0_1} \gamma_2^2 \zeta_2^2}{4 \alpha_1^2 \zeta_2^2 \zeta_2^2} + \frac{3 \cos [\lambda_1 - \lambda_2] \alpha_2^2 C_{0_1} \gamma_2^2 \zeta_2^2}{4 \alpha_1^2 \zeta_2^2 \zeta_2^2} + \frac{3 \cos [\lambda_1 - \lambda_2] \alpha_2^2 C_{0_1} \gamma_2^2 \zeta_2^2}{4 \alpha_1^2 \zeta_2^2 \zeta_2^2} + \frac{3 \cos [\lambda_1 - \lambda_2] \alpha_2^2 C_{0_1} \gamma_2^2 \zeta_2^2}{4 \alpha_1^2 \zeta_2^2} + \frac{3 \cos [\lambda_1 - \lambda_2] \alpha_2^2 \zeta_2^2}{4 \alpha_1^2 \zeta_2^2} + \frac{3 \cos [\lambda_1 - \lambda_2] \alpha_2^2}{4 \alpha_1^2 \zeta_2^2} + \frac{3 \cos [\lambda_1 - \lambda_2] \alpha_2^2}{4 \alpha_1^2 \zeta_2^2} + \frac{3 \cos [\lambda_1 - \lambda_2] \alpha_2^2} + \frac{3 \cos [\lambda_1 - \lambda_2] \alpha_2^2}{4 \alpha_1^2 \zeta_2^2} + \frac{3 \cos [\lambda_1 - \lambda_2] \alpha_2^2} + \frac{3 \cos [\lambda_1 - \lambda_2] \alpha_2^2}{4 \alpha_1^2 \zeta_2^2} + \frac{3 \cos [\lambda_1 - \lambda_2] \alpha_2^2} + 3 \cos [\lambda_1 - \lambda_2] \zeta$	$\frac{4 a_1 \gamma_1 \Lambda_2}{4 a_1 \gamma_1 \Lambda_2} + \frac{3 \cos[2 \lambda_1] a_2 \cos_3 \gamma_2 \xi_2^2}{8 a_1 \gamma_1 \Lambda_2} + \frac{1}{8 \epsilon_2^2} - \frac{1}{2 \epsilon_2^2} - \frac{1}{2 \epsilon_2^2} + \frac{1}{2 \epsilon_2^2} + \frac{1}{2 \epsilon_2^2 + 1} + \frac{3 \cos[\lambda_1 + \lambda_2] a_2^2 \cos[\lambda_1 + \lambda_2] a_2^2 + 1}{2 \epsilon_2^2 \epsilon_2^2} + \frac{1}{2 \epsilon_2^2 \epsilon_2^2} + \frac{1}{2 \epsilon_2^2 \epsilon_2^2} + \frac{1}{2 \epsilon_2^2 \epsilon_2^2} + \frac{1}{2 \epsilon_2^2 \epsilon_2^2 \epsilon_2^2 \epsilon_2^2} + \frac{1}{2 \epsilon_2^2 \epsilon_2^2 \epsilon_2^2 \epsilon_2^2 \epsilon_2^2} + \frac{1}{2 \epsilon_2^2 \epsilon_2^2 \epsilon_2^2 \epsilon_2^2 \epsilon_2^2 \epsilon_2^2 \epsilon_2^2} + \frac{1}{2 \epsilon_2^2 $		
$\frac{8 a_1 \gamma_1 \Lambda_2}{9 \cos[3 \lambda_1 - \lambda_2] a_2 \cos_2 \gamma_2 \xi_2^2} + \frac{8 a_1 \gamma_1 \Lambda_2}{8 a_1 \gamma_1 \Lambda_2} + \frac{3 \cos[4 \lambda_1 - 6 \lambda_2] a_2 \cos_3 \gamma_2 \xi_2^2}{8 a_1 \gamma_1 \Lambda_2} + \frac{3 \cos[4 \lambda_1 - 4 \lambda_2] a_2 \cos_3 \gamma_2 \xi_2^2}{4 a_1 \gamma_1 \Lambda_2} + \frac{9 \cos[4 \lambda_1 - 2 \lambda_2] a_2 \cos_3 \gamma_2 \xi_2^2}{8 a_1 \gamma_1 \Lambda_2} + \frac{3 \cos[\lambda_1 - 3 \lambda_2] a_2^2 \cos_1 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 a_1^2 \gamma_1^2 \Lambda_2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 a_1^2 \gamma_1^2 \Lambda_2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 a_1^2 \gamma_1^2 \gamma_1^2 \gamma_1^2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 a_1^2 \gamma_1^2 \gamma_1^2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 a_1^2 \gamma_1^2 \gamma_1^2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 a_1^2 \gamma_1^2 \gamma_1^2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \gamma_1^2 \gamma_2^2 \xi_2^2} + \frac{3 a_1^2 \gamma_1^2 \gamma_1^2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \gamma_1^2 \gamma_2^2 \gamma_1^2 \gamma_2^2} + 3 a_1^2 \gamma_1^2 \gamma_1^2 \gamma_2^2 \gamma_1^2 \gamma_2^2 \gamma_1^2 \gamma_1^2 \gamma_1^2 \gamma_2^2 \gamma_1^2 \gamma_1^2$	$\frac{4 a_1 \gamma_1 \Lambda_2}{3 \cos [\lambda_1 + \lambda_2] a_2 \cos_2 \gamma_2 \xi_2^2} + \frac{8 a_1 \gamma_1 \Lambda_2}{8 a_1 \gamma_1 \Lambda_2} + \frac{9 \cos [2 \lambda_1 - 4 \lambda_2] a_2 \cos_3 \gamma_2}{8 a_1 \gamma_1 \Lambda_2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] a_2 \cos_3 \gamma_2}{4 a_1 \gamma_1 \Lambda_2} + \frac{3 a_2^2 \cos_3 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [2 \lambda_2]}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [2 \lambda_2] a_2 \cos_3 \gamma_2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [\lambda_1 - \lambda_2] a_2^2 \cos_1 \gamma_2^2 \xi_2^2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [\lambda_1 - \lambda_2] a_2^2 \cos_1 \gamma_2^2 \xi_2^2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [\lambda_1 - \lambda_2] a_2^2 \cos_1 \gamma_2^2 \xi_2^2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [\lambda_1 - \lambda_2] a_2^2 \cos_1 \gamma_2^2 \xi_2^2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [\lambda_1 - \lambda_2] a_2^2 \cos_3 \gamma_2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [\lambda_1 - \lambda_2] a_2^2 \cos_3 \gamma_2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [\lambda_1 - \lambda_2] a_2^2 \cos_3 \gamma_2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [\lambda_1 - \lambda_2] a_2^2 \cos_3 \gamma_2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [\lambda_1 - \lambda_2] a_2^2 \cos_3 \gamma_2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [\lambda_1 - \lambda_2] a_2^2 \cos_3 \gamma_2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [\lambda_1 - \lambda_2] a_2^2 \cos_3 \gamma_2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [\lambda_1 - \lambda_2] a_2^2 \cos_3 \gamma_2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [\lambda_1 - \lambda_2] a_2^2 \cos_3 \gamma_2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [\lambda_1 - \lambda_2] a_2^2 \cos_3 \gamma_2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [\lambda_1 - \lambda_2] a_2^2 \cos_3 \gamma_2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [\lambda_1 - \lambda_2] a_2^2 \cos_3 \gamma_2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [\lambda_1 - \lambda_2] a_2^2 \cos_3 \gamma_2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [\lambda_1 - \lambda_2] a_2^2 \cos_3 \gamma_2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [\lambda_1 - \lambda_2] a_2^2 \cos_3 \gamma_2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [\lambda_1 - \lambda_2] a_2^2 \cos_3 \gamma_2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [\lambda_1 - \lambda_2] a_2^2 \cos_3 \gamma_2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [\lambda_1 - \lambda_2] a_2^2 \cos_3 \gamma_2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [\lambda_1 - \lambda_2] a_2^2 \cos_3 \gamma_2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [\lambda_1 - \lambda_2] a_2^2 \cos_3 \gamma_2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [\lambda_1 - \lambda_2] a_2^2 \cos_3 \gamma_2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [\lambda_1 - \lambda_2] \cos_3 \gamma_2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [\lambda_1 - \lambda_2] \cos_3 \gamma_2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [\lambda_1 - \lambda_2] \cos_3 \gamma_2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [\lambda_1 - \lambda_2] \cos_3 \gamma_2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [\lambda_1 - \lambda_2] \cos_3 \gamma_2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [\lambda_1 - \lambda_2] \cos_3 \gamma_2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [\lambda_1 - \lambda_2] \cos_3 \gamma_2}{4 a_1^2 \gamma_1^2 \Lambda_2} + $	$\frac{4 a_1 \gamma_1 \Lambda_2}{4 a_1 \gamma_1 \Lambda_2} + \frac{3 \cos[2 \lambda_1] a_2 \cos_3 \gamma_2 \xi_2^2}{8 a_1 \gamma_1 \Lambda_2} + \frac{2 \xi_2^2}{2} + \frac{2 \xi_2^2}{2} - \frac{1}{2 \xi_2^2} + \frac{3 \cos[\lambda_1 + \lambda_2] a_2^2 \cos_1 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos[\lambda_1 + \lambda_2] a_2^2 \cos_1 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 a_1^2 \gamma_1^2 \Lambda_2}{2 \xi_2^2} +$		
$\frac{8 a_1 \gamma_1 \Lambda_2}{9 \cos[3 \lambda_1 - \lambda_2] a_2 C_0 2 \gamma_2 \xi_2^2} + \frac{8 a_1 \gamma_1 \Lambda_2}{3 \cos[4 \lambda_1 - 6 \lambda_2] a_2 C_0 3 \gamma_2 \xi_2^2}$ $\frac{3 \cos[4 \lambda_1 - 6 \lambda_2] a_2 C_0 3 \gamma_2 \xi_2^2}{8 a_1 \gamma_1 \Lambda_2}$ $\frac{3 \cos[4 \lambda_1 - 4 \lambda_2] a_2 C_0 3 \gamma_2 \xi_2^2}{4 a_1 \gamma_1 \Lambda_2}$ $\frac{9 \cos[4 \lambda_1 - 2 \lambda_2] a_2 C_0 3 \gamma_2 \xi_2^2}{8 a_1 \gamma_1 \Lambda_2}$ $\frac{3 \cos[\lambda_1 - 3 \lambda_2] a_2^2 C_0 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos[2 \lambda_1] a_2^2 C_0 2 \gamma_2^2 \xi_2^2}{2 \xi_2^2} + \frac{3 \cos(2 \lambda_1) a_2^2 C_0 2 \gamma_2^2 \xi_2^2}{2 \xi_2^2} + \frac{3 \cos(2 \lambda_1) a_2^2 C_0 2 \gamma_2^2 \xi_2^2}{2 \xi_2^2} + \frac{3 \cos(2 \lambda_1) a_2^2 C_0 2 \gamma_2^2 \xi_2^2}{2 \xi_2^2} + \frac{3 \cos(2 \lambda_1) a_2^2 C_0 2 \gamma_2^2 \xi_2^2}{2 \xi_2^2} + \frac{3 \cos(2 \lambda_1) a_2^2 C_0 2 \gamma_2^2 \xi_2^2}{2 \xi_2^2} + \frac{3 \cos(2 \lambda_1) a_2^2 C_0 2 \gamma_2^2 \xi_2^2}{2 \xi_2^2} + \frac{3 \cos(2 \lambda_1) a_2^2 C_0 2 \gamma_2^2 \xi_2^2}{2 \xi_2^2} + \frac{3 \cos(2 \lambda_1) a_2^2 C_0 2 \gamma_2^2 \xi_2^2}{2 \xi_2^2} + \frac{3 \cos(2 \lambda_1) a_2^2 C_0 2 \gamma_2^2 \xi_2^2}{2 \xi_2^2} + \frac{3 \cos(2 \lambda_1) a_2^2 C_0 2 \gamma_2^2 \xi_2^2}{2 \xi_2^2} + \frac{3 \cos(2 \lambda_1) a_2^2 C_0 2 \gamma_2^2 \xi_2^2}{2 \xi_2^2} + \frac{3 \cos(2 \lambda_1) a_2^2 C_0 2 \gamma_2^2 \xi_2^2}{2 \xi_2^2} + \frac{3 \cos(2 \lambda_1) a_2^2 C_0 2 \gamma_2^2 \xi_2^2}{2 \xi_2^2} + \frac{3 \cos(2 \lambda_1) a_2^2 C_0 2 \gamma_2^2 \xi_2^2}{2 \xi_2^2} + \frac{3 \cos(2 \lambda_1) a_2^2 C_0 2 \gamma_2^2 \xi_2^2}{2 \xi_2^2} + \frac{3 \cos(2 \lambda_1) a_2^2 C_0 2 \gamma_2^2 \xi_2^2}{2 \xi_2^2} + \frac{3 \cos(2 \lambda_1) a_2^2 C_0 2 \gamma_2^2 \xi_2^2}{2 \xi_2^2} + \frac{3 \cos(2 \lambda_1) a_2^2 C_0 2 \gamma_2^2 \xi_2^2}{2 \xi_2^2} + \frac{3 \cos(2 \lambda_1) a_2^2 C_0 2 \gamma_2^2 \xi_2^2}{2 \xi_2^2} + \frac{3 \cos(2 \lambda_1) a_2^2 C_0 2 \gamma_2^2 \xi_2^2}{2 \xi_2^2} + \frac{3 \cos(2 \lambda_1) a_2^2 C_0 2 \gamma_2^2 \xi_2^2}{2 \xi_2^2} + \frac{3 \cos(2 \lambda_1) a_2^2 C_0 2 \gamma_2^2 \xi_2^2}{2 \xi_2^2} + \frac{3 \cos(2 \lambda_1) a_2^2 C_0 2 \gamma_2^2 \xi_2^2}{2 \xi_2^2} + \frac{3 \cos(2 \lambda_1) a_2^2 C_0^2 \gamma_2^2 \xi_2^2}{2 \xi_2^2} + \frac{3 \cos(2 \lambda_1) a_2^2 C_0^2 \gamma_2^2 \xi_2^2}{2 \xi_2^2} + \frac{3 \cos(2 \lambda_1) a_2^2 C_0^2 \gamma_2^2 \xi_2^2}{2 \xi_2^2} + \frac{3 \cos(2 \lambda_1) a_2^2 C_0^2 \gamma_2^2 \xi_2^2}{2 \xi_2^2} + \frac{3 \cos(2 \lambda_1) a_2^2 C_0^2 \gamma_2^2 \xi_2^2}{2 \xi_2^2} + \frac{3 \cos(2 \lambda_1) a_2^2 C_0^2 \gamma_2^2 \xi_2^2}{2 \xi_2^2} + \frac{3 \cos(2 \lambda_1) a_2^2 C_0^2 \gamma_2^2 \xi_2^2}{2 \xi_2^2} + \frac{3 \cos(2 \lambda_1) a_2^2 C_0^2 \gamma_2^2}{2 \xi_2^2} + \frac{3 \cos(2 \lambda_1) a_2^2 C_0^2 \gamma_2^2}{2 \xi_2^2} + \frac{3 \cos(2 \lambda_1) a_2^2 C_0^2 \gamma_2^2}{2 \xi_2^2} + \frac{3 \cos(2 \lambda_1) a_2^2 C_0^2}{2 \xi_2^2}} + $	$\frac{4 a_1 \gamma_1 \Lambda_2}{3 \cos [\lambda_1 + \lambda_2] a_2 C_{0_2} \gamma_2 \xi_2^2} + \frac{8 a_1 \gamma_1 \Lambda_2}{8 a_1 \gamma_1 \Lambda_2} - \frac{9 \cos [2 \lambda_1 - 4 \lambda_2] a_2 C_{0_3} \gamma_2}{8 a_1 \gamma_1 \Lambda_2} - \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] a_2 C_{0_3} \gamma_2}{4 a_1 \gamma_1 \Lambda_2} + \frac{3 a_2^2 C_{0_0} \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [2 \lambda_2]}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [2 \lambda_2] a_2^2 C_{0_1} \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [2 \lambda_2] a_2^2 C_{0_1} \gamma_2^2 \xi_2^2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [2 \lambda_2] a_2^2 C_{0_1} \gamma_2^2 \xi_2^2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [2 \lambda_1 - 4 \lambda_2] a_2^2 C_{0_2} \gamma_2^2 \xi_2^2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [2 \lambda_1 - 4 \lambda_2] a_2^2 C_{0_2} \gamma_2^2 \xi_2^2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [2 \lambda_1 - 4 \lambda_2] a_2^2 C_{0_2} \gamma_2^2 \xi_2^2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [2 \lambda_1 - 4 \lambda_2] a_2^2 C_{0_2} \gamma_2^2 \xi_2^2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [2 \lambda_1 - 4 \lambda_2] a_2^2 C_{0_2} \gamma_2^2 \xi_2^2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [2 \lambda_1 - 4 \lambda_2] a_2^2 C_{0_2} \gamma_2^2 \xi_2^2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [2 \lambda_1 - 4 \lambda_2] a_2^2 C_{0_2} \gamma_2^2 \xi_2^2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [2 \lambda_1 - 4 \lambda_2] a_2^2 C_{0_2} \gamma_2^2 \xi_2^2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [2 \lambda_1 - 4 \lambda_2] a_2^2 C_{0_2} \gamma_2^2 \xi_2^2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [2 \lambda_1 - 4 \lambda_2] a_2^2 C_{0_2} \gamma_2^2 \xi_2^2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [2 \lambda_1 - 4 \lambda_2] a_2^2 C_{0_2} \gamma_2^2 \xi_2^2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [2 \lambda_1 - 4 \lambda_2] a_2^2 C_{0_2} \gamma_2^2 \xi_2^2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [2 \lambda_1 - 4 \lambda_2] a_2^2 C_{0_2} \gamma_2^2 \xi_2^2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [2 \lambda_1 - 4 \lambda_2] a_2^2 C_{0_2} \gamma_2^2 \xi_2^2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [2 \lambda_1 - 4 \lambda_2] a_2^2 C_{0_2} \gamma_2^2 \xi_2^2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [2 \lambda_1 - 4 \lambda_2] a_2^2 C_{0_2} \gamma_2^2 \xi_2^2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [2 \lambda_1 - 4 \lambda_2] a_2^2 C_{0_2} \gamma_2^2 \xi_2^2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [2 \lambda_1 - 4 \lambda_2] a_2^2 C_{0_2} \gamma_2^2 \xi_2^2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [2 \lambda_1 - 4 \lambda_2] a_2^2 C_{0_2} \gamma_2^2 \xi_2^2} + \frac{3 \cos [2 \lambda_1 - 4 \lambda_2] a_2^2 C_{0_2} \gamma_2^2 \xi_2^2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [2 \lambda_1 - 4 \lambda_2] a_2^2 C_{0_2} \gamma_2^2 \xi_2^2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [2 \lambda_1 - 4 \lambda_2] a_2^2 C_{0_2} \gamma_2^2 \xi_2^2} + \frac{3 \cos [2 \lambda_1 - 4 \lambda_2] a_2^2 C_{0_2} \gamma_2^2}{4 a_1^2 \gamma_1^2 \Lambda_2} + $	$\frac{4 a_1 \gamma_1 \Lambda_2}{4 a_1 \gamma_1 \Lambda_2} + \frac{3 \cos [2 \lambda_1] a_2 \cos \gamma_2 \xi_2^2}{8 a_1 \gamma_1 \Lambda_2} + \frac{2 \xi_2^2}{8 a_1 \gamma_1 \Lambda_2} + \frac{2 \xi_2^2}{8 a_1^2 \gamma_1 \Lambda_2} + \frac{3 \cos [\lambda_1 + \lambda_2] a_2^2 \cos \gamma_2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [\lambda_1 + \lambda_2] a_2^2 \cos \gamma_2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] a_2^2 \cos \gamma_2 \xi_2^2}{2 \cos (2 \lambda_1 - 2 \lambda_2) a_2^2 \cos \gamma_2 \xi_2^2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] a_2^2 \cos \gamma_2 \xi_2^2}{2 \cos \gamma_2 \xi_2^2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] a_2^2 \cos \gamma_2 \xi_2^2}{2 \cos \gamma_2 \xi_2^2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] a_2^2 \cos \gamma_2 \xi_2^2}{2 \cos \gamma_2 \xi_2^2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] a_2^2 \cos \gamma_2 \xi_2^2}{2 \cos \gamma_2 \xi_2^2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] a_2^2 \cos \gamma_2 \xi_2^2}{2 \cos \gamma_2 \xi_2^2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] a_2^2 \cos \gamma_2 \xi_2^2}{2 \cos \gamma_2 \xi_2^2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] a_2^2 \cos \gamma_2 \xi_2^2}{2 \cos \gamma_2 \xi_2^2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] a_2^2 \cos \gamma_2 \xi_2^2}{2 \cos \gamma_2 \xi_2^2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] a_2^2 \cos \gamma_2 \xi_2^2}{2 \cos \gamma_2 \xi_2^2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] a_2^2 \cos \gamma_2 \xi_2^2}{2 \cos \gamma_2 \xi_2^2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] a_2^2 \cos \gamma_2 \xi_2^2}{2 \cos \gamma_2 \xi_2^2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] a_2^2 \cos \gamma_2 \xi_2^2}{2 \cos \gamma_2 \xi_2^2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] a_2^2 \cos \gamma_2 \xi_2^2}{2 \cos \gamma_2 \xi_2^2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] a_2^2 \cos \gamma_2 \xi_2^2}{2 \cos \gamma_2 \xi_2^2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] a_2^2 \cos \gamma_2 \xi_2^2}{2 \cos \gamma_2 \xi_2^2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] a_2^2 \cos \gamma_2 \xi_2^2}{2 \cos \gamma_2 \xi_2^2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] a_2^2 \cos \gamma_2 \xi_2^2}{2 \cos \gamma_2 \xi_2^2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] a_2^2 \cos \gamma_2 \xi_2^2}{2 \cos \gamma_2 \xi_2^2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] \cos (2 \cos \gamma_2 \xi_2^2)}{2 \cos \gamma_2 \xi_2^2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] \cos (2 \cos \gamma_2 \xi_2^2)}{2 \cos \gamma_2 \xi_2^2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] \cos (2 \cos \gamma_2 \xi_2^2)}{2 \cos \gamma_2 \xi_2^2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] \cos (2 \cos \gamma_2 \xi_2^2)}{2 \cos \gamma_2 \xi_2^2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] \cos (2 \cos \gamma_2 \xi_2^2)}{2 \cos \gamma_2 \xi_2^2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] \cos (2 \cos \gamma_2 \xi_2^2)}{2 \cos \gamma_2 \xi_2^2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] \cos (2 \cos \gamma_2 \xi_2^2)}{2 \cos \gamma_2 \xi_2^2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] \cos (2 \cos \gamma_2 \xi_2^2)}{2 \cos \gamma_2 \xi_2^2} + \frac{3 \cos [2 \cos \gamma_2 \xi_2^2]}{2 \cos \gamma_2 \xi_2^2} + \frac{3 \cos [2 \cos \gamma_2 + 2 \cos \gamma_2 + 2 \cos \gamma_2 + 2 \cos \gamma_2]}{2 \cos \gamma_2 \xi_2^2} + \frac{3 \cos [2 \cos \gamma_2 + 2 \cos \gamma_2 + 2 \cos \gamma_2]}{2 \cos \gamma_2}} + \frac{3 \cos [2 \cos \gamma_2 + 2 \cos \gamma_2]}{2 \cos \gamma_2} + 3 \cos [$		
$\frac{8 a_1 \gamma_1 \Lambda_2}{9 \cos[3 \lambda_1 - \lambda_2] a_2 \cos_2 \gamma_2 \xi_2^2} + \frac{8 a_1 \gamma_1 \Lambda_2}{8 a_1 \gamma_1 \Lambda_2} + \frac{3 \cos[4 \lambda_1 - 6 \lambda_2] a_2 \cos_3 \gamma_2 \xi_2^2}{8 a_1 \gamma_1 \Lambda_2} + \frac{3 \cos[4 \lambda_1 - 4 \lambda_2] a_2 \cos_3 \gamma_2 \xi_2^2}{4 a_1 \gamma_1 \Lambda_2} + \frac{3 \cos[4 \lambda_1 - 2 \lambda_2] a_2 \cos_3 \gamma_2 \xi_2^2}{8 a_1 \gamma_1 \Lambda_2} + \frac{3 \cos[\lambda_1 - 3 \lambda_2] a_2^2 \cos_1 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos[2 \lambda_1] a_2^2 \cos_2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos(2 \lambda_1) a_2^2 \cos_2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos(2 \lambda_1) a_2^2 \cos_2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos(2 \lambda_1) a_2^2 \cos_2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos(2 \lambda_1) a_2^2 \cos_2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos(2 \lambda_1) a_2^2 \cos_2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos(2 \lambda_1) a_2^2 \cos_2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos(2 \lambda_1) a_2^2 \cos_2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos(2 \lambda_1) a_2^2 \cos_2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos(2 \lambda_1) a_2^2 \cos_2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos(2 \lambda_1) a_2^2 \cos_2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos(2 \lambda_1) a_2^2 \cos_2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos(2 \lambda_1) a_2^2 \cos_2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos(2 \lambda_1) a_2^2 \cos_2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos(2 \lambda_1) a_2^2 \cos_2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos(2 \lambda_1) a_2^2 \cos_2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos(2 \lambda_1) a_2^2 \cos_2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos(2 \lambda_1) a_2^2 \cos_2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos(2 \lambda_1) a_2^2 \cos_2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos(2 \lambda_1) a_2^2 \cos_2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos(2 \lambda_1) a_2^2 \cos_2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos(2 \lambda_1) a_2^2 \cos_2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos(2 \lambda_1) a_2^2 \cos_2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos(2 \lambda_1) a_2^2 \cos_2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos(2 \lambda_1) a_2^2 \cos_2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos(2 \lambda_1) \cos(2 \lambda_1) \cos(2 \lambda_1)}{8 a_1^2 \gamma_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos(2 \lambda_1) \cos(2 \lambda_1) \cos(2 \lambda_1)}{8 a_1^2 \gamma_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos(2 \lambda_1) \cos(2 \lambda_1) \cos(2 \lambda_1)}{8 a_1^2 \gamma_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos(2 \lambda_1) \cos(2 \lambda_1)}{8 a_1^2 \gamma_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos(2 \lambda_1) \cos(2 \lambda_1)}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos(2 \lambda_1) \cos(2 \lambda_1)}{8 $	$\frac{4 a_1 \gamma_1 \Lambda_2}{3 \cos [\lambda_1 + \lambda_2] a_2 C 0_2 \gamma_2 \xi_2^2} + \frac{3 a_1 \gamma_1 \Lambda_2}{8 a_1 \gamma_1 \Lambda_2} + \frac{9 \cos [2 \lambda_1 - 4 \lambda_2] a_2 C 0_3 \gamma_2}{8 a_1 \gamma_1 \Lambda_2} + \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] a_2 C 0_3 \gamma_2}{4 a_1 \gamma_1 \Lambda_2} + \frac{3 a_2^2 C 0_0 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [2 \lambda_2] a_2 C \alpha_2 \gamma_2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [2 \lambda_2] a_2 C \alpha_2 \gamma_2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [2 \lambda_2] a_2 C \alpha_2 \gamma_2^2 \xi_2^2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [2 \lambda_1 - 4 \lambda_2] a_2^2 C \alpha_2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 a_1^2 \gamma_1^2 \Lambda_2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 a_2^2 \gamma_1^2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 a_1^2 \gamma_1^2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 a_1^2 \gamma_1^2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 a_1^2 \gamma_1^2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 a_1^2 \gamma_1^2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 a_1^2 \gamma_1^2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 a_1^2 \gamma_1^2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 a_1^2 \gamma_1^2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 a_1^2 \gamma_1^2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 a_1^2 \gamma_1^2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 a_1^2 \gamma_1^2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 a_1^2 \gamma_1^2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 a_1^2 \gamma_1^2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 a_1^2 \gamma_1^2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 a_1^2 \gamma_1^2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 a_1^2 \gamma_1^2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 a_1^2 \gamma_1^2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 a_1^2 \gamma_1^2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 a_1^2 \gamma_1^2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 a_1^2 \gamma_1^2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 a_1^2 \gamma_1^2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 a_1^2 \gamma_1^2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 a_1^2 \gamma_1^2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 a_1^2 \gamma_1^2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 a_1^2 \gamma_1^2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \gamma_2} + \frac{3 a_1^2 \gamma_1^2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \gamma_2} + \frac{3 a_1^2 \gamma_1^2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \gamma_2} + \frac{3 a_1^2 \gamma_1^2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \gamma_2} + \frac{3 a_1^2 \gamma_1^2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \gamma_2} + \frac{3 a_1^2 \gamma_1^2 \gamma_2^2 \xi_2^2 \xi_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \gamma_2} + 3 a_1^2 \gamma_1^2 $	$\frac{4 a_1 \gamma_1 \Lambda_2}{4 a_1 \gamma_1 \Lambda_2} + \frac{3 \cos[2 \lambda_1] a_2 \cos_3 \gamma_2 \xi_2^2}{8 a_1 \gamma_1 \Lambda_2} + \frac{2 \xi_2^2}{8 a_1 \gamma_1 \Lambda_2} + \frac{2 \xi_2^2}{2 \xi_2^2} + \frac{3 \cos[\lambda_1 + \lambda_2] a_2^2 \cos_1 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos[2 \lambda_1 - 2 \lambda_2] a_2^2 \cos_2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos[2 \lambda_1 - 2 \lambda_2] a_2^2 \cos_2 \gamma_2^2 \xi_2^2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 a_1^2 \gamma_1^2 \Lambda_2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 a_1^2 \gamma_1^2 \gamma_1^2 \Lambda_2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 a_1^2 \gamma_1^2 \gamma_1^2 \Lambda_2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 a_1^2 \gamma_1^2 \gamma_1^2 \Lambda_2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 a_1^2 \gamma_1^2 \gamma_1^2 \Lambda_2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 a_1^2 \gamma_1^2 \gamma_1^2 \Lambda_2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 a_1^2 \gamma_1^2 \gamma_1^2 \Lambda_2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 a_1^2 \gamma_1^2 \gamma_1^2 \Lambda_2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 a_1^2 \gamma_1^2 \gamma_1^2 \Lambda_2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 a_1^2 \gamma_1^2 \gamma_1^2 \Lambda_2}{4 a_1^2$		
$\frac{8 a_1 \gamma_1 \Lambda_2}{9 \cos[3 \lambda_1 - \lambda_2] a_2 \cos_2 \gamma_2 \xi_2^2} + \frac{8 a_1 \gamma_1 \Lambda_2}{8 a_1 \gamma_1 \Lambda_2} + \frac{3 \cos[4 \lambda_1 - 6 \lambda_2] a_2 \cos_3 \gamma_2 \xi_2^2}{8 a_1 \gamma_1 \Lambda_2} + \frac{3 \cos[4 \lambda_1 - 4 \lambda_2] a_2 \cos_3 \gamma_2 \xi_2^2}{4 a_1 \gamma_1 \Lambda_2} + \frac{9 \cos[4 \lambda_1 - 2 \lambda_2] a_2 \cos_3 \gamma_2 \xi_2^2}{8 a_1 \gamma_1 \Lambda_2} + \frac{3 \cos[\lambda_1 - 3 \lambda_2] a_2^2 \cos_1 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos[2 \lambda_1] a_2^2 \cos_2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos[3 \lambda_1 - 5 \lambda_2] a_2^2 \cos_3 \gamma_2^2 \xi_2^2}{3 \cos[3 \lambda_1 - 5 \lambda_2] a_2^2 \cos_3 \gamma_2^2 \xi_2^2}$	$\frac{4 a_1 \gamma_1 \Lambda_2}{3 \cos [\lambda_1 + \lambda_2] a_2 C 0_2 \gamma_2 \xi_2^2} + \frac{8 a_1 \gamma_1 \Lambda_2}{8 a_1 \gamma_1 \Lambda_2} - \frac{9 \cos [2 \lambda_1 - 4 \lambda_2] a_2 C 0_3 \gamma_2}{8 a_1 \gamma_1 \Lambda_2} - \frac{3 \cos [2 \lambda_1 - 2 \lambda_2] a_2 C 0_3 \gamma_2}{4 a_1 \gamma_1 \Lambda_2} + \frac{3 a_2^2 C 0_0 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [2 \lambda_2]}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [2 \lambda_2] a_2^2 C a_1 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [2 \lambda_1 - \lambda_2] a_2^2 C a_1 \gamma_2^2 \xi_2^2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [2 \lambda_1 - 4 \lambda_2] a_2^2 C a_2 \gamma_2^2 \xi_2^2}{8 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [3 \lambda_1 - 3 \lambda_2] a_2^2 C a_3 \gamma_2^2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [3 \lambda_1 - 3 \lambda_2] a_2^2 C a_3 \gamma_2^2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [3 \lambda_1 - 3 \lambda_2] a_2^2 C a_3 \gamma_2^2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [3 \lambda_1 - 3 \lambda_2] a_2^2 C a_3 \gamma_2^2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [3 \lambda_1 - 3 \lambda_2] a_2^2 C a_3 \gamma_2^2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [3 \lambda_1 - 3 \lambda_2] a_2^2 C a_3 \gamma_2^2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [3 \lambda_1 - 3 \lambda_2] a_2^2 C a_3 \gamma_2^2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [3 \lambda_1 - 3 \lambda_2] a_2^2 C a_3 \gamma_2^2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [3 \lambda_1 - 3 \lambda_2] a_2^2 C a_3 \gamma_2^2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [3 \lambda_1 - 3 \lambda_2] a_2^2 C a_3 \gamma_2^2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [3 \lambda_1 - 3 \lambda_2] a_2^2 C a_3 \gamma_2^2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [3 \lambda_1 - 3 \lambda_2] a_2^2 \cos \gamma_2^2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [3 \lambda_1 - 3 \lambda_2] a_2^2 \cos \gamma_2^2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [3 \lambda_1 - 3 \lambda_2] a_2^2 \cos \gamma_2^2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [3 \lambda_1 - 3 \lambda_2] a_2^2 \cos \gamma_2^2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [3 \lambda_1 - 3 \lambda_2] a_2^2 \cos \gamma_2^2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [3 \lambda_1 - 3 \lambda_2] a_2^2 \cos \gamma_2^2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [3 \lambda_1 - 3 \lambda_2] a_2^2 \cos \gamma_2^2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [3 \lambda_1 - 3 \lambda_2] a_2^2 \cos \gamma_2^2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [3 \lambda_1 - 3 \lambda_2] a_2^2 \cos \gamma_2^2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [3 \lambda_1 - 3 \lambda_2] a_2^2 \cos \gamma_2^2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [3 \lambda_1 - 3 \lambda_2] a_2^2 \cos \gamma_2^2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [3 \lambda_1 - 3 \lambda_2] a_2^2 \cos \gamma_2^2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [3 \lambda_1 - 3 \lambda_2] a_2^2 \cos \gamma_2^2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [3 \lambda_1 - 3 \lambda_2] a_2^2 \cos \gamma_2^2}{4 a_1^2 \gamma_1^2 \Lambda_2} + \frac{3 \cos [3 \lambda_1 - 3 \lambda_2] a_2^2 \cos \gamma_2^2}{4 a_1^2 \gamma_1^2 \Lambda_2} + 3 \cos [3 \lambda_1 -$	$\frac{4 a_1 \gamma_1 \Lambda_2}{4 a_1 \gamma_1 \Lambda_2}$ $\frac{3 \cos [2 \lambda_1] a_2 \cos \gamma_2 \xi_2^2}{8 a_1 \gamma_1 \Lambda_2} + \frac{1}{8 a_1 \gamma_1 \Lambda_2}$ $\frac{2 \xi_2^2}{8 a_1^2 \Lambda_2} - \frac{1}{8 a_1^2 \cos (\lambda_1 + \lambda_2) a_2^2 \cos (\lambda_1 + \lambda_2) a_2^2 \cos (\lambda_1 + \lambda_2) a_2^2 \cos (\lambda_2 + \lambda_2) a_2^2 \cos$		